
  

  

Abstract— This article presents a new technique for 

obtaining a flexible trajectory based on the deformation of a 

Bézier curve through a field of vectors. This new technique is 

called Bézier Trajectory Deformation (BTD). The trajectory 

deformation is computed with a constrained optimization 

method (Lagrange Multipliers Theorem). A linear system is 

solved to achieve the result. As a consequence, the deformed 

trajectory is computed in a few milliseconds. In addition, the 

linear system can be solved offline if the Bézier curve order is 

maintained constant during the movement of the robot, which 

is the common case. This technique can be combined with any 

collision avoidance algorithm that produces a field of vectors. 

In particular, it has been developed for artificial potential field 

methods. BTD is combined with a recently proposed PF 

method, the Potential Field Projection method (PFP). The 

resulting technique is tested in dynamic environment showing 

its real-time performance and its efficacy for obstacle 

avoidance. 

I. INTRODUCTION 

  robot can be defined as a machine able to collect 
information as well as to interact with the surrounding 

environment in a natural way. The simple aim of moving a 
mobile robot from an initial pose (xi, yi, θi) to a goal pose 
(xg, yg, θg) in an automatic and safe way is a task that 
involves several research fields: collision avoidance, path 
planning, sensor fusion, mapping, control systems, etc. All 
these fields must be combined to obtain a computationally 
efficient motion planning algorithm. 

A lot of researchers consider parametric curves in the 
construction of trajectories for wheeled robots. It is due to 
their useful properties for the path generation problem. In 
fact, they produce inherently smooth paths and, 
consequently, many path planning techniques use 
parametric curves to enhance the trajectories produced by 
the planner. The most commonly used are B-Splines [1, 2], 
NURBS [3-6], Bézier [7-15] and Rational Bézier Curves, 
[16, 17]. The main difference between these curves is the 
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complexity of their mathematical definition. While Bézier 
curves are the simplest ones, B-Splines or NURBS are more 
complex although they can more accurately represent 
particular curves or objects. Nevertheless, complexity 
involves additional computation and, therefore, Bézier 
curves are generally selected for path smoothing. For 
instance, in [7] a method for on-line modification of non-
holonomic mobile robot trajectories is developed to obey to 
environmental changes. An initial path is assumed to be 
provided by a motion planner. It is resampled for obtaining 
a sequence of bubbles and constructing a bubble band. A 
path is computed as a concatenation of Reeds and Shepp 
paths. It is discontinuous at the concatenation points and a 
Bézier smoothing is used in order to obtain a feasible path 
for car-like robots.  

In other research fields like CAD/CAGD, the shape 
modification of parametric curves is a recently research 
topic (see [18] for NURBS and [19] for B-Spline). In fact, 
the problem of parametric curves shape modification by 
constrained optimization was recently proposed in [20]. In 
[21] a new technique was developed to modify a Bézier 
curve by minimizing the changes of its shape in a fast and 
exact way. This shape modification is controlled by a field 
of vectors applied to particular points of the Bézier curve.  

The shape modification of parametric curves is an 
emerging field in path planning and existing methods are 
still not suitable for navigation. For instance, in [13-15] a 
path is computed based on a quadratic Bézier curve and its 
maximum curvature is minimized with boundary 
constraints. However, obstacles and changes in the 
environment are not considered. 

In this work the Bézier shape modification technique [21] 
is adapted for its use in path planning for holonomic robots 
using Potential Fields methods (PF), as they produce a field 
of vectors that guide the robot to non-collision positions. 
An exact, fast and efficient mathematical way for 
computing the deformation of the Bézier curve from forces 
derived from the Potential Field Projection (PFP) method 
[23-25] has been developed, named the Bézier Trajectory 
Deformation (BTD) method.   

PF methods are very popular in path planning because of 
their simplicity and real-time performance [18, 25]. The 
main idea consists in filling the robot’s workspace with an 
artificial potential field in which the robot is attracted by the 
goal and repelled by the obstacles. In this research field, a 
considerable amount of variants and improvements have 
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been developed. Here, the Potential Field Projection 
method (PFP) is used. It is based on the combination of the 
classical Potential Fields method [22] and the multi-rate 
Kalman filter estimation [26, 27] and takes into account the 
object volume, the uncertainties on locations, the future 
trajectories of the robot and the obstacles and the multi-rate 
information supplied by sensors. 

An initial path is obtained by means of the PFP method, 
taking into account the attractive forces produced by the 
goal in the present and future instants of time. The set of 
repulsive forces computed from the repulsive potential field 
are provided to the BTD, which modifies the initial Bézier 
trajectory in order to avoid the obstacles and guiding the 
robot to the goal by means of a smooth trajectory computed 
in real-time. 

This paper is organized as follows: section II defines the 
Bézier curve and the translation into trajectory; section III 
develops the mathematical method to modify a Bézier 
trajectory from a field of vectors, the Bézier Trajectory 
Deformation (BTD) method; in Section IV the Potential 
Field Projection method (PFP) is explained; this method is 
combined with BTD in section V; simulation results with 
PFP-BTD are given in section VI and, finally, section VII 
provides conclusions and future works.  

II. DEFINITIONS AND PRELIMINARY NOTATION 

The Bézier curve of n order, given (n+1) control points, 
Qi, is defined as: 
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where u is the intrinsic parameter and Bi,n(u) are the 
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The intrinsic parameter, u, is non-dimensional. In order 
to use a Bézier curve as a trajectory, this intrinsic parameter 
must be redefined as a time variable, associating each curve 
position (robot position) with a time instant t∈[t0, tf], where 
t0 and tf are the initial and final trajectory instants. For this 
purpose, the definition of the Bézier curve has to change: 
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An initial Bézier robot trajectory should be modified to 
avoid the mobile obstacles in the environment. Such an 
operation can be done moving the control points from its 

original position to the new one, determined by any obstacle 
avoidance algorithm. The displacement of a control point i 
is denoted by εεεεi while [ ]0 n=ε ε εL  is the displacement of the 

set of control points that define the curve. The new Bézier 
curve, Sεεεε(αααα(t)), obtained modifying its controls points is 
defined as: 
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III. BÉZIER TRAJECTORY DEFORMATION (BTD): 
MATHEMATICAL MODEL 

To deform a given Bézier curve describing a trajectory, 
the control points must be changed and the perturbation εεεεi 
of every control point must be computed. This results in the 
Bézier Trajectory Deformation method (BTD), which is 
explained in the following paragraphs. 

In order to do that, a constraint optimization problem is 
proposed similar to [21] but with some modification for 
mobile robot applications. The cost function to optimize is 
defined as follows: 
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This function minimizes the changes of the shape 
minimizing the distance between the original Bézier curve 
(2) and the modified one (3), as depicted in Fig.1. This cost 
function is adequate for holonomic mobile robots because it 
is supposed that the optimal trajectory is the original one 
computed by the path planning stage.  

Nevertheless, the first problem to solve in the BTD for 
mobile robot applications is that the new curve cannot be 
constructed using a large number of control points because 
those kind of Bézier curves are numerically unstable [10]. 
In addition to this, the order of the Bézier curve must not be 
higher than two because it can produce loops or cusps 
depending on the geometrical location of the control points. 
For that reason, two or more second-order Bézier curves 
(with three control points each) are concatenated to 
represent the complete trajectory. Thus, the cost function in 
(4) must be redefined as in (5) considering a set of k 
concatenated Bézier curves of order nl and being ε (l) the 

perturbation vector for modifying curve l. From now on, the 
superscript (l) references the corresponding l curve. 

 

 
Fig. 1.  The deformation of a Bézier curve. 
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Continuity and derivability constraints must be imposed 
on the joint points of the concatenated curves. The 
particular restrictions are: 

1. Continuity constraints: 
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where αi is the i-th Bézier curve. 
2. The required constraints to guarantee derivability are 

specified in (7), where '
iα  is the first derivative of the i-th 

Bézier curve. 
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3. Derivative restrictions in the start and end points of the 
resulting concatenated curve must be imposed to maintain 
the start and end pose of the mobile robot. These constraints 
result in equations (8).  
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4. As in [21], a field of vectors connect the Start points 
(points on the curve), Si, i=1,..,l with the Target points 
(points on the modified curve), Ti. The modified Bézier 
curve Sεεεε(αααα(t)) is designed to pass through the target points. 
This constraint of the BTD is given by equations (9).  
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Due to the curve order and continuity restrictions 
necessary in the BTD for mobile robot applications, only 
one deformation vector can be applied to each concatenated 
Bézier curve. Thus, we will have as many vectors as 
concatenated curves. 

The Lagrange Multipliers theorem has been applied to 
solve the constrained optimization problem (5). The 
Lagrange function L(εεεεi) is defined in (10), where the cost 
function g1 is given by (11) and the constraints ri, i=1,…,4, 
have been formulated before by means of expressions (6), 
(7), (8) and (9).  
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The constraints previously defined are included in the 
Lagrange function in the following form: 
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where λ is the Lagrange multipliers vector. 
Thus, the L function depends on: 
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The problem is solved making zero the partial derivatives 

of the Lagrange function: 
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A linear system of equations is obtained. The matrix 

formulation of this system is defined as D·X = b, where: 
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The terms of bT are defined as, 
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The matrix D is square and defined as a block matrix. The 
first row is computed from the partials of the Lagrangian 
function and every block depends on the cost function or a 
specific constraint. The second, third and fourth rows are 
the necessary constraints defined on the problem. This 
matrix is invertible and, therefore, the solution of the system 
can be obtained as X = D-1·b. This fact guarantees that the 
solution obtained is not an approximation. It is an exact 
solution. Another important issue is the low computational 
cost  involved in  this  calculation. The deformation of  the 
initial robot path can be done in real time because the 
problem to solve is  a  linear system and  the inverse matrix  
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Fig.2. BTD result with eight Bézier curves. 

D-1 can be computed in advance if the number of second-
order Bézier curves are maintained invariable. 

An example of the BTD algorithm is shown in Fig. 2. A 
curved initial trajectory is deformed by means of a field of 
vectors. Eight Bézier curves are used to join the initial and 
final poses. The robot orientation in these poses does not 
change in the modified trajectory. The computational time 
of the BTD algorithm is 0.23ms in a Pentium IV 2.4 Ghz 
(without including the D-1 computation, which was obtained 
off-line once the prediction horizon was established).  

IV. POTENTIAL FIELD PROJECTION (PFP): GENERATING A 

FIELD OF VECTORS 

The technique explained above requires an algorithm that 
generates an initial trajectory and a field of vectors to 
modify it in case obstacles are detected, ensuring that the 
deformed trajectory is collision-free. In the present study, 
the BTD technique is evaluated through a predictive PF 
path planning method described in [23-25], the Potential 

Field Projection method. This method is based on the 
combination of the classical Potential Fields method [22] 
and the multi-rate Kalman filter estimation [26, 27] and 
takes into account the uncertainties on locations, the future 
trajectories of the robot and the obstacles and the multi-rate 
information supplied by sensors. The particularities of this 
approach are described in this section. 

This method generates a predicted trajectory during a 
prediction horizon Th for the robot taking into account its 
kinematic model and the attractive forces produced by a 
potential field in the present (j=0) and future instants of 
time (j>0). Also the obstacles trajectories are predicted and 
repulsive forces are generated to be applied on the robot for 
obstacle avoidance. 

Here, second-order particle kinematic models (13) have 
been used for modeling the robot and the obstacles’ motion, 
where T is the control or estimation period, the state vector 
x∈ℜ4 in the j-th instant (j∈[0,…,Th/T]) is composed of 
position x, y and velocity vx, vy in XY coordinates and the  
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control input is the object acceleration ax, ay. The model 
(13) responds to the linear state space representation (14), 
where u∈ℜ2 is the input vector, z∈ℜ2 is the measurement 
vector, w∈ℜ4  is the process noise, v∈ℜ2 is measurement 
noise and A∈ℜ4x4, B∈ℜ4x2 and C∈ℜ2x4 are the state space 
matrices for linear systems.  
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Predicted future positions and uncertainties are obtained 
from the prediction equations of the multi-rate Kalman filter 
(15) for every object in the environment, where x̂ ∈ℜ4 is 
the state estimation vector, P∈ℜ4x4 is the error estimation 
variance matrix, K∈ℜ4x2 is the Kalman gain and Q∈ℜ4x4 
and R∈ℜ2x4 are, respectively, the process noise and the 
measurement noise covariance matrices. 
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(15) 

The delta function ∆ modifies the expression of the 
Kalman gain indicating the presence (unit ∆ matrix) or the 
absence (zero ∆ matrix) of measurements in one particular 
estimation instant j. Predicted future positions are derived 
imposing zero ∆ matrices for future instants, as 
measurements are not available. 

The predicted positions and their uncertainties are used in 
the generation of a potential field Uj(x) = Uatt,j(x) + Urep,j(x) 
that guides the robot to the goal avoiding the obstacles in 
the environment. It is composed of an attractive component 
Uatt,j(x)  affected by the goal and a repulsive component 
Urep,j(x) generated by the detected obstacles and their 
uncertainties, that are considered restricted areas for path 
planning. Both are defined in [25] even in the instants of 
time without measurements of the environment (j>0). These 
potential fields generate forces in every prediction instant j. 

On the one hand, the set of attractive forces 
Fatt,j(x) = −∇Uatt,j(x) are transformed into accelerations by a 
dynamic particle model and, this way, are considered as 
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control inputs in the prediction cycle of the multi-rate 
Kalman filter (15), since the attractive forces have the 
structure of a PD controller. Thus, a set of predicted 
positions is obtained that would lead the robot toward the 
goal if there were no obstacles.  

On the other hand, this prediction is modified taking into 
account the set of repulsive forces Frep,j(x) = −∇Urep,j(x) by 
means of the BTD method. In fact, the sequence of 
predicted positions is considered as the start points Si of the 
reference trajectory for the BTD explained above. Then, the 
set of repulsive forces are transformed into displacements 
by means of a particle dynamic model, and constitute the 
perturbation vector of the deformed Bézier curve. These 
displacements affect the shape of the initial parametric 
trajectory, they are used in the computation of the target 
points Ti of the deformed trajectory.  

V. BTD- PFP: COMBINING BTD WITH A PF METHOD 

In order to illustrate the BTD-PFP fusion, an example is 
used here. This example corresponds to eight predicted 
positions (start points) along the prediction horizon Th, with 
a set of repulsive vectors associated to every predicted 
point. The time span used in this prediction is 14 s 
(Th=14s), that is, 2 s between each position point (T=2s).  

The set of vectors associated to the i predicted points 
must be equal to the number of concatenated Bézier curves 
in BTD, i.e., k. Then i=k. In this example the number of 
predicted robot positions is i = 8, so there are k=8 Bézier 
curves to be computed. 

In this example the predicted trajectory is a straight line. 
Therefore, the control points for the Bézier cuves are 
equally distributed along the predicted trajectory. This 
means that each vector will be located in the middle of each 
concatenated Bézier curve, except the first and last ones, 
which will be located at the initial and end points, 
respectively. In general, the start point must be located in 
the current instant point of the BTD. In Fig. 3, the straight 
line is the predicted trajectory of the robot. The field of 
vectors is plotted on the positions of the predicted 
trajectory. The discontinuous line is the modified trajectory. 

 
Fig. 3. Modification of eight concatenated Bézier curves. 

VI. SIMULATION RESULTS 

A simulation application has been implemented in 
Matlab to demonstrate the integration of the BTD method 
with a PF method such as PFP. Also a video is provided.  

The environment shown in the left sequence of images in 
Fig. 4 represents a 2D four-sided scenario with five mobile 
obstacles (in yellow) and a mobile robot (in blue). The 
obstacles follow linear trajectories (given by their kinematic 
model) going from side to side of the environment, 
simulating a rebound in a pool table. The circles 
surrounding the robot and the obstacles are the uncertainties 
of their predicted trajectories. 

When the obstacles come close to the robot, it starts a 
smooth avoiding maneuver based on the BTD, which 
modifies its initial trajectory (given by the PFP) and guides 
the robot to the goal without collision. If no obstacles are 
detected, BTD also transforms the predicted trajectory into 
a Bézier trajectory, more appropriate for robot navigation. 

  

  

  

  
Fig. 4. Snapshots of the trajectory (left images) obtained by the 
BTD-PFP algorithm in an environment with 5 mobile obstacles. 

Right images show detailed views of robot trajectory for the 
corresponding left images. 
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Images depict the trajectory followed by the robot in order 
to reach goals 1 and 2 avoiding the obstacles in the 
environment in different instants of the simulation. In the 
right sequence of images shown in Fig. 4 we can observe 
details of the specific instants of the robot trajectory shown 
in the corresponding left picture. We can see that, when a 
future collision is detected, the initial trajectory is modified 
in real-time using the BTD method and that the resulting 
trajectory successfully performs the avoiding maneuver. 
The complete simulation lasts 25s and the mean execution 
time of the BTD-PFP algorithm throughout the simulation 
is 11ms, which is appropriate for real-time performance. 

VII. CONCLUSIONS AND FUTURE WORKS 

This article presents a novel technique, the Bézier 
Trajectory Deformation (BTD), for computing a flexible 
trajectory based on the deformation of a Bézier curve 
through a field of vectors.  The trajectory deformation is 
computed as a constrained optimization problem solved 
with the Lagrange Multipliers Theorem and a linear system 
is obtained to achieve the deformation. As a consequence, 
the deformed trajectory is computed with low 
computational cost. This technique has been combined with 
a PF method, the Potential Field Projection method (PFP), 
which computes a local trajectory for the robot taking into 
account the future trajectories for the robot and the 
obstacles, their uncertainties and the multi-rate information 
supplied by sensors. The PFP-BTD technique is tested by 
simulation in a 2D dynamic environment with mobile 
obstacles. 

Our immediately future work is related to the 
introduction of other constrains in the definition problem, 
like the path length or the curvature for non-holonomic 
cases. We also plan to implement this method on a real 
platform as well as compare it with other techniques.  
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