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1. Introduction

The basic idea of the whole pricing philosophy in finance consists of the construc-
tion of a linear functional π which strictly separates the arbitrage opportunities
obtained by trading strategies. Moreover, this functional provides the state price
vector necessary for pricing contingent claims in a financial market. In a more
formal way, if we denote by M the linear subspace of all trading strategies and
by K the nonnegative cone, then there are no arbitrage opportunities if and only if
M ∩ K = {0}. This result is known as the Fundamental Theorem of Asset Pricing.
We remark that the existence of state price vectors follows by the Separating Hy-
perplane Theorem (Rockafellar, 1990) – a version of the Hahn–Banach theorem
(see Duffie, 1992). However, the Hahn–Banach theorem is not a useful tool to
construct the state price vector. Despite its practical importance, a computational
approach to the calibration of the state price vector has received little attention in
the mathematical finance theory in discrete time (see Sheldon (1996), Theorem 1.2,
Bingham and Kiesel (1998), Theorem 1.4.1, and Pliska (1997), 1.16). We remark
that the single period model is important because it provides much of the intuition
that is necessary for more general models of financial markets and because it is pos-
sible to combine the result of the single period in order to prove the Fundamental
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Theorem of Asset Pricing for the Multi-Period Model (see Bingham and Kiesel
(1998), Proposition 4.2.3 and Sheldon (1996), Section 2.3 and Theorem 3.1).

The aim of this paper is to give a constructive proof of this fundamental result.
We comupte a linear measure, given by a vector, for which the Euclidean distance
between the expected payment in the first period and the initial price vector in
period zero is minimal. Indeed, this linear measure is the solution of a bounded
linear square (BLS) problem. If the Euclidean distance is non-zero then the dif-
ference between these two vectors gives an arbitrage opportunity. Otherwise, if
the Euclidean distance is zero, one of the following statements holds. If the linear
measure is positive, this one is a state price vector and no arbitrage opportunities
exist. If the linear measure has components, which depends on the final random
payments and indices of these zero components, arbitrage opportunities exist or
do not exist. In the first case we compute an arbitrage opportunity as the residual
vector of a solution of a BLS problem. Otherwise, by using the linear measure, we
construct a continuous path of state price vectors.

We note that our strategy is similar to the one used by Avellaneda (1998) for
calibrating an asset-pricing model in continuous time (recall that we use a discrete
time model). To this end Avellaneda gives an algorithm in order to obtain a risk-
neutral probability that minimizes the Kullback–Leibler distance, also called the
relative entropy, with respect to a given prior distribution. The main difference lies
in the fact that in Avellaneda’s result the existence of risk-neutral probabilities in
the market is assumed. That is, he assumes the existence of state price vectors.

This paper is organized as follows. In the next section we introduce some defin-
itions, we state the main result of this paper and give some numerical examples as
its applications. In Section 3 we prove the main theorem of this paper.

2. Definition and Statement of Results

In this paper we consider a single period market, that is, we have two indices,
namely t = 0 which is the current time, and t = �t , which is the terminal date for
all economic activities under consideration.

The financial market contains N traded financial assets, whose prices at time
t = 0 are denoted by

S0 = [S1
0 S

2
0 . . . S

N
0 ]′ ≥ 0 ,

here ′ denotes the transpose of a matrix or vector. At time�t , the owner of financial
asset number i receives a random payment depending on the state of the world. We
model this randomness by introducing a finite probability space (�,F ,P), where
� = {ω1, ω2, . . . , ωk}, F = P (�) and P(ω1) > 0 for all i ∈ {1, 2, . . . , k}. We
note that the random payment arising from financial asset i is a Rk-vector

[Si�t(ω1), S
i
�t (ω2), . . . , S

i
�t (ωk)]′ ≥ 0 .
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At time t = 0 the agents can buy and sell financial assets. The portfolio position of
an individual agent is given by a trading strategy, which is a vector

θ = [θ1, θ2, . . . , θN ]′ ∈ RN.

Here θi denotes the quantity if the ith asset is bought at time t = 0, which may
be negative if the agent has a short position, as well as positive if he has a long
position.

The dynamics of this model using the trading strategy θ are as follows:

1. At time t = 0 the agent invests the amount

S′
0θ = θ1S

1
0 + θ2S

2
0 + · · · + θNS

N
0 ,

2. and at time t = �t the agent receives a random payment P that we can
represent by using a matrix as follows. Let

S�t =



S1
�t(ω1) S

1
�t(ω2) · · · S1

�t(ωk)

S2
�t(ω1) S

2
�t(ω2) · · · S2

�t(ωk)

...
...

. . .
...

SN�t(ω1) S
N
�t(ω2) · · · SN�t(ωk)


 ,

then

P = S′
�tθ .

We remark that each component of vector P represents the payment received
depending on the realized state of the world ω.

Then we can define an arbitrage opportunity as a vector θ ∈ RN such that one
of the following two conditions holds.

(Arb1): S′
0θ = 0 and P = S′

�tθ ≥ 0, with S′
�tθ �= 0.

(Arb2): S′
0θ < 0 and P = S′

�tθ ≥ 0.

Note that in the case of an arbitrage opportunity which satisfies (Arb 1) the
agent’s net investment at time t = 0 is zero, and there exists a ω ∈ � such that

N∑
i=1

Si�t(ω)θi > 0 ,

that is, there exists non-zero probability to obtain a ‘free lunch’. In the case of
condition (Arb 2), we have that S′

0θ < 0, that is, the agent borrows money for
consumption at time t = 0, and he does not have to repay anything at the time �t .

By using the well-known result called the Separating Hyperplane Theorem
(Rockafellar, 1990), which is a version of the Hahn-Banach Theorem (Sheldon,
1996) the following result follows (Bingham and Kiesel, 1998; Duffie, 1992;
Pliska, 1997; Sheldon, 1996).
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THEOREM 1. There are no arbitrage opportunities if and only if there exists
� > 0 such that

S�t� = S0 . (1)

We will say that a vector � > 0 satisfying (1) is a state price vector. Moreover,
we can state that the Separating Hyperplane Theorem implies the existence of a
state price vector in the proof Theorem 1.

The main goal of this paper is to construct either the state price vector if non-
arbitrage opportunities exist or an arbitrage opportunity if there are no state price
vectors. To see this we shall use an algorithm due to Dax (1993). More precisely,
Dax’s Algorithm provides a solution y∗ of the following bounded least square
problem

min ‖Ay − b‖2

subject to y ≥ 0 ,
(2)

(see Appendix A). As we shall see, the fact that this algorithm establishes the
existence of a point y∗ that solves (2), is the key to compute either a state price
vector, if non-arbitrage opportunities exist, or an arbitrage opportunity, if there are
no state price vectors. On the other hand and for a practical purpose, the above
argument justify the use, for example, of the lsqnonneg function of the MATLAB
Optimization Toolbox (this function gives a numerical solution of the BLS problem
(2)).

Now we can give some preliminary definitions and results about basic Linear
Algebra. Let A be an m× n matrix. Then we define the column space of A, which
we denote by col A, as

col A = span{Ae1, Ae2, . . . , Aen} ,
where ei denotes the ith column of the n×n identity matrix. In particular, if we set

Si = S�tei

for i = 1, 2, . . . , k, then

col S�t = span {S1,S2, . . . ,Sk} .
In a similar way as above we define the row space of A, denoted by row A, by

row A = col A′.

Let

nul A = {x : Ax = 0} ,
and for a vectorial subspace E ⊂ Rn, we shall denote by E⊥ the orthogonal
complement of E, that is,

E⊥ = {x : x′y = 0 for all y ∈ E} .
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It is well known (Strang, 1998) that

E ∩ E⊥ = {0} ,
and for all x ∈ Rn there exist x1 ∈ E and x2 ∈ E⊥ such that

x = x1 + x2 .

Moreover,

(nul A)⊥ = row A = col A′.

Finally, set K = {x ∈ Rn : x ≥ 0}, ◦
K = {x ∈ Rn : x > 0} and for x ∈ Rn, let

Z(x) = {i : xi = 0}.

THEOREM 2. Let �∗ be a solution of

min ‖S�t� − S0‖2

subject to � ≥ 0 ,
(3)

and take the residual vector θ∗ = S�t�∗ − S0. If θ ∗ �= 0 then θ∗ satisfies (Arb 2).
Otherwise, if θ ∗ = 0 then one and only one of the following statements holds:

1. If �∗ > 0 then there are no arbitrage opportunities.
2. If �∗ ≥ 0 and

span {Si : i ∈ Z(�∗)} ⊂ span {Si : i �∈ Z(�∗)} ,
then there exist δ > 0 and a continuous path of state price vectors �∗

ε , where
ε ∈ (0, δ), and such that

lim
ε→0

�∗
ε = �∗.

Moreover, there are no arbitrage opportunities.
3. If �∗ ≥ 0 and

span {Si : i ∈ Z(�∗)} �⊆ span {Si : i �∈ Z(�∗)} ,
then there are arbitrage opportunities which satisfy (Arb 1) and there are no
state price vectors. Moreover, let y∗ be a solution of

min ‖[S�t,−S0]y + [S�t,−S0]e‖2

subject to y ≥ 0 ,
(4)

where e = [1, 1, . . . , 1]′, then

θ∗ = [S�t,−S0]y∗ + [S�t,−S0]e
is an arbitrage opportunity.
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From the above theorem we obtain the following result.

COROLLARY 1. Theorem 2 implies Theorem 1.

From Theorem 2 we obtain that to construct either a state price vector or an ar-
bitrage opportunity, we only need to show that a BLS of type (2) always has a
solution. To justify this argument and for completeness, in Appendix A we give an
algorithm due to Dax (1997).

To end this section, four numerical examples are given, one for each statement,
to illustrate the usefulness of this constructive approach. Hence, the lsqnonneg
function, of the MATLAB Optimization Toolbox, will be used in order to solve
either (3) or (4).

In the following three examples we consider S�t equal to




1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.05 1.38 2.23 4.20 2.56 3.15 1.35 2.00 3.02 0.99
1.20 1.24 2.56 4.23 2.56 3.65 1.25 2.58 3.50 0.96
1.23 1.45 2.34 4.26 2.56 3.25 1.99 1.99 3.14 0.89
1.34 1.23 2.67 4.89 2.09 3.87 1.95 2.06 3.65 1.02
1.65 1.24 2.89 4.09 2.89 2.58 1.80 2.42 3.51 1.50
1.45 1.65 2.90 4.23 2.09 3.00 2.50 2.36 3.40 0.95
1.38 1.98 2.98 4.56 2.78 3.65 1.64 2.36 2.99 0.97
1.86 1.27 2.99 4.89 2.31 3.25 1.23 2.00 2.57 1.23
1.56 1.21 2.67 4.12 2.24 3.14 1.00 1.55 3.05 1.00




In the first one, let

S0 =




3.03
2.08
3.09
2.21
3.01
2.87
1.32
0.98
4.01
3.64




and we obtain �∗ =




0.7086
0
0
0
0
0
0
0
0

1.5664




and θ∗ =




0.7550
−0.2148

0.7359
−0.0557

0.4627
−0.6488
−1.1956
−1.5173

0.7653
0.9682




.

Therefore, from the main statement of Theorem 2, the residual vector θ∗ provides
an arbitrage opportunity.
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Now, let

S0 =




4.0500
8.4056
9.1860
8.8618
9.0691
9.3665
9.6371
9.9531
8.4859
7.6952




. Then, we obtain �∗ =




0.10
0.90
0.30
0.20
0.45
0.23
0.45
0.96
0.34
0.12




and ‖θ ∗‖ ≈ 0 .

From the statement 1 of Theorem 2, we have that �∗ is a state price vector.
To illustrate the statement 3 of Theorem 2, let

S0 =




2.7700
6.0177
6.1615
6.5499
6.6203
6.8336
6.7538
7.0184
6.6595
5.9046




. Then, we obtain �∗ =




0.54
0.21
0.23
0.41
0.70
0.12
0.56

0
0
0




and ‖θ ∗‖ ≈ 0 .

Then we compute the reduced row echelon form of S�t (using the MATLAB func-
tion rref) obtaining that it is equal to the identity matrix. In consequence we have
that the set of the first seven columns of S�t is linearly independent of the set
given by the last three ones. By using the statement 3 of Theorem 2, we obtain the
existence of arbitrage opportunities. Now we compute them by solving (4), and we
obtain as residual vector

θ∗ =




−0.1661
−0.4621
−0.1553

0.5028
−0.0628
−0.0189
−0.1405

0.1949
−0.0290

0.2072




,

which gives an arbitrage opportunity.
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Finally, we construct the following example of statement 2 of Theorem 2. Let
be

S�t =




1.0 1.0 1.0 1.0 1.0 1.0
2.0 2.1 1.9 1.8 2.5 2.4
3.0 2.8 2.9 3.3 3.2 2.7
1.0 1.2 1.9 2.2 2.5 1.7


 and S0 =




1
2.2
3.1
1.8


 .

By solving (3) we obtain

�∗ =




0.4075
0
0

0.1285
0.4013
0.0627



.

Since

S2,S3 ∈ span {S1,S4,S5,S6}
it follows, by solving numerically

[S1S4S5S6]x = Si for i = 2, 3,

that

S2 ≈ 0.51411S1 + 0.11599S4 − 0.24765S5 + 0.61755S6

and

S3 ≈ −0.25392S1 + 0.91223S4 − 0.54232S5 + 0.88401S6.

Then, we take

�ε =




0.4075 − ε(0.51411 − 0.25392)
ε

ε

0.1285 − ε(0.11599 + 0.91223)
0.4013 + ε(0.24765 + 0.54232)
0.0627 − ε(0.61755 + 0.88401)



.

If ε ∈ (0, 4.1757×10−2) then, it is not difficult to see that,�ε > 0 and S�t�ε ≈ S0.

3. Proof of the Main Result

This section is devoted to the proof of Theorem 2. To this end we will reduce the
problem to compute the solution of a BLS problem. More precisely, we will start
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considering the solution, namely �∗ ∈ Rk, of (3). Then, if the residual vector of
θ∗ is different from 0 it gives an arbitrage opportunity. Otherwise, we have only
two possibilities depending on �∗. If �∗ > 0, then �∗ is a state price vector.
Otherwise, if �∗ ≥ 0, then we will take a partition in the set of all future price
vectors. This partition will be given by the set of future prices vectors associated
with the entries of �∗ equal to 0, and its complementary. Also, in this situation, we
have only two possibilities given by the fact that the first set can be either linearly
dependent or linearly independent of the second one. If linear dependence holds,
then we will construct a continuous path of state price vectors. Otherwise, there
exists an arbitrage opportunity and we will obtain it by computing the residual
vector of (4).

Assume that �∗ ≥ 0 is a solution of (3) obtained by using the Dax’s Algorithm
given in the Appendix A. If θ∗ �= 0, then we will use the following useful lemma
due to Dax (1993), Lemma 2 (see Appendix A).

LEMMA 1. Let �∗ ∈ Rk. Then �∗ holds (3) if and only if �∗ and θ∗ satisfy

�∗ ≥ 0,S�tθ∗ ≥ 0 and (�∗)′S′
�tθ

∗ = 0 . (5)

By using the above lemma, we have that

S′
0θ

∗ = (S�t�∗ − θ∗)T θ∗

= (�∗)′S′
�tθ

∗ − (θ∗)′θ∗

= −‖θ∗‖2 < 0 .

Since, S′
�tθ

∗ ≥ 0, we obtain that θ∗ is an arbitrage opportunity which satisfies
(Arb 2).

Now, assume that θ∗ = 0. Then we will consider the following two situations.
First, assume that �∗ > 0. In this case �∗ is a state price vector. We claim that
there are no arbitrage opportunities. Otherwise, there exists θ ∈ RN satisfying that

S′
0θ = (S�t�∗)′θ = (�∗)′S′

�tθ > 0 ,

a contradiction and the claim follows. Thus statement 1 holds.
Now, assume that �∗ ≥ 0. In this case we can write, without loss of generality,

that

�∗ = [0, . . . , 0, ψ∗
s+1, . . . , ψ

∗
k ]′

for some s > 0. We recall that Si = S�tei . From now on we will denote by S�t,2
the matrix given by

[Ss+1Ss+2 · · · Sk] .
Now, assume that there exists 1 ≤ l ≤ k − s be such that

col S�t,2 = span {Sk−l+1,Sk−l+2, . . . ,Sk}
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and where {Sk−l+1,Sk−l+2, . . . ,Sk} is a set of linearly independent vectors. Then

Si =
k∑

j=k−l+1

λi,jSj , (6)

where λij ∈ R, for i = 1, 2, . . . , k − l and j = k − l + 1, . . . , k. Moreover,

S0 = S′
�t�

∗ =
k∑

j=s+1

ψ∗
j Sj . (7)

Finally, we take S�t,1 = [S1S2 · · · Ss]. Note that S�t = [S�t,1S�t,2]. The next
lemma will be useful to prove statement 2.

LEMMA 2. If col S�t,1 ⊂ col S�t,2, then there exist δ > 0 and a continuous path
of state price vectors �∗

ε , where ε ∈ (0, δ), and such that

lim
ε→0

�∗
ε = �∗.

Proof. To prove the lemma we need to find � = [ψ1, . . . , ψk]′ > 0 such that

S0 =
k∑

j=s+1

ψ∗
j Sj =

k∑
i=1

ψiSi . (8)

Then, we can write

k∑
i=1

ψiSi =
s∑
i=1

ψiSi +
k−l∑

t=s+1

ψtSt +
k∑

j=k−l+1

ψjSj

=
k∑

j=k−l+1

(
s∑
i=1

ψiλi,j

)
Sj +

k−l∑
t=s+1

ψtSt +
k∑

j=k−l+1

ψjSj

=
k−l∑

t=s+1

ψtSt +
k∑

j=k−l+1

(
s∑
i=1

ψiλi,j − ψj

)
Sj .

By using (8) we obtain that,

k∑
j=s+1

ψ∗
j Sj =

k−l∑
t=s+1

ψtSt +
k∑

j=k−l+1

(
s∑
i=1

ψiλi,j − ψj

)
Sj .

Finally, � must hold that ψt = ψ∗
t for t = s + 1, . . . , k − l and(

s∑
i=1

ψiλi,j

)
+ ψj = ψ∗

j
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for j = k − l + 1, . . . , s. If we take ψi = ε > 0 for i = 1, 2, . . . , s, then

ε

(
s∑
i=1

λi,j

)
+ ψj = ψ∗

j

for j = k − l + 1, . . . , s. Thus, we only need to choose ε > 0 satisfying that

ψj = ψ∗
j − ε

(
s∑
i=1

λi,j

)
> 0 (9)

for all j = k − l + 1, . . . , s. To see this we consider the set

K =
{
j ∈ {k − l + 1, . . . , s} :

s∑
i=1

λi,j > 0

}
,

and we take

δ = min

{
ψ∗
j∑s

i=1 λi,j
: j ∈ K

}
> 0 .

Therefore, for all ε < δ, the equality (9) holds for j = k − l + 1, . . . , s. Finally,
we conclude the proof of lemma considering �∗

ε as[
ε, . . . , ε, ψ∗

s+1, . . . , ψ
∗
k−l , ψ

∗
k−l+1 − ε

(
s∑
i=1

λi,k−l+1

)
, . . . , ψ∗

k − ε

(
s∑
i=1

λi,k

)]′
.

Clearly �∗
ε is a state price vector for all ε ∈ (0, δ) satisfying that limε→0 �

∗
ε = �∗.

�

We remark that, from the above lemma and the proof of statement 1, if �∗ ≥ 0
and

span {Si : i ∈ Z(�∗)} = col S�t ,

then there are no arbitrage opportunities. Thus, statement 2 follows.
Finally, in order to prove statement 3, suppose that

col S�t,1 � col S�t,2 .

Then s > 1 and, without loss of generality, we may assume the existence of a
maximal integer number l∗ ≥ 0, with s − l∗ > 1, such that

Ss−l
∗
,Ss−l

∗+1, . . . ,Ss ∈ col S�t,1 ∩ col S�t,2 .

Now we take

S∗
�t,1 = [S1 . . . Ss−l

∗−1]
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and

S∗
�t,2 = [Ss−l∗ . . . SsSs+1 . . . Sk] .

Note that S�t = [S∗
�t,1S∗

�t,2] and col S∗
�t,1 ∩ col S∗

�t,2 = {0}. Moreover, from
the same argument used to prove Lemma 2, we can construct a vector �∗

2 > 0
satisfying that

S∗
�t,2�

∗
2 = S0 ,

that is,

[S∗
�t,1S∗

�t,2]
[

0

�∗
2

]
= S0 .

In this context, the following lemma gives a characterization of the existence of
arbitrage opportunities.

LEMMA 3. Let

E = {X : X = (S∗
�t,1)

′θ for some θ ∈ nul (S∗
�t,2)

′} .
Then E∩K �= {0} if and only if there are arbitrage opportunities satisfying (Arb 1)

Proof. Note that if X = (S∗
�t,1)

′θ ∈ E ∩ K and E ∩ K �= {0}, then

S′
�tθ =

[
(S∗

�t,1)
′

(S∗
�t,2)

′

]
θ ≥ 0 .

Since

(nul (S∗
�t,2)

′)⊥ = col S∗
�t,2

and S0 ∈ col S∗
�t,2, then

S′
0θ = 0 .

Thus, θ is an arbitrage opportunity satisfying (Arb 1). Conversely, if θ is an
arbitrage opportunity satisfying (Arb 1) then

S′
0θ = [0(�∗

2 )
′]
[
(S∗

�t,1)
′

(S∗
�t,2)

′

]
θ = 0

and [
(S∗

�t,1)
′

(S∗
�t,2)

′

]
θ ≥ 0 .

Therefore,

(S∗
�t,1)

′θ ≥ 0 and (S∗
�t,2)

′θ = 0 ,
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and, in consequence, (S∗
�t,1)

′θ ∈ E ∩ K. This ends the proof of lemma. �

LEMMA 4. E⊥ = nul S∗
�t,1 .

Proof. Let Y ∈ E⊥. Then Y′X = 0 for all X ∈ E. Thus, Y′(S∗
�t,1)

′θ = 0
for all θ ∈ nul (S∗

�t,2)
′, that is, (S∗

�t,1Y)′θ = 0 for all θ ∈ nul (S∗
�t,2)

′. Therefore,
S∗
�t,1Y ∈ (nul (S∗

�t,2)
′) = col S∗

�t,2. Since col S∗
�t,1 ∩ col S∗

�t,2 = {0}, we have
that S∗

�t,1Y = 0, and Y ∈ nul S∗
�t,1. On the other hand, if S∗

�t,1Y = 0 then
Y′(S∗

�t,1)
′θ = 0 for all θ ∈ nul (S∗

�t,2)
′. Therefore, Y ∈ E⊥ and the lemma follows.

�

Under the assumptions of statement 3, the following lemma gives a characteriza-
tion of the existence of a state price vector.

LEMMA 5. nul S∗
�t,1 ∩ ◦

K �= ∅ if and only if there exists a state price vector.

Proof. If nul S∗
�t,1 ∩ ◦

K �= ∅, then there exists �1 > 0 such that S∗
�t,1�1 = 0.

Thus,

[S∗
�t,1S∗

�t,2]
[
�1

�∗
2

]
= S0 ,

that is, � = [�1 �
∗
2 ]′ is a state price vector. Conversely, let � = [�1 �2]′ be a

state price vector. Then

[S∗
�t,1S∗

�t,2]
[
�1

�2

]
= S0 ,

that is,

S∗
�t,1�1 = S0 − S∗

�t,2�2 ∈ col S∗
�t,2 .

By the fact that col S∗
�t,1 ∩ col S∗

�t,2 = {0}, we have that

S∗
�t,1�1 = 0 .

Therefore, �1 ∈ nul S∗
�t,1 ∩ ◦

K and the lemma follows. �

From the separating hyperplane theorem and the Riesz’s Lemma the following
result follows.

LEMMA 6. Let F be a subspace of Rn such that F ⊥ �= {0}. If F ∩ K = {0} then
there exists y∗ ∈ F ⊥ such that x′y∗ > 0 for all x ∈ K that is F ⊥ ∩ K �= {0}.

Next, we prove the first part of statement 3. To this end, assume that there is a

state price vector. From Lemma 5 we have that nul S∗
�t,1 ∩ ◦

K �= ∅. Thus, there
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exists �1 > 0 satisfying S∗
�t,1�1 = 0, a contradiction because S∗

�t,1 ≥ 0. Now,

since nul S∗
�t,1 ∩ ◦

K = ∅, that is E⊥ ∩ ◦
K = ∅, then either E⊥ ∩ ∂K �= ∅ or

E⊥ ∩ ∂K = ∅ holds, where ∂K denotes the topological boundary of K. It is not
difficult to see that if E⊥ ∩ ∂K �= ∅ then E ∩ K �= {0} and, from Lemma 3,
we have the existence of arbitrage opportunities satisfying (Arb 1). On the other
hand, assume that E⊥ ∩ ∂K = ∅, that is E⊥ ∩ K = {0}, then, by using Lemma 6,
E ∩ K �= {0} and in a similar way as above we obtain the existence of arbitrage
opportunities. This ends the proof of the first part of statement 3.

To prove the second part we shall use the following two lemmas. The proof of
the first one is straightforward.

LEMMA 7. There exists a state price vector if and only if there exists y∗ > 0 such
that

[S�t,−S0]y∗ = 0 .

By using Stiemkes’s Theorem (Dax, 1993) we have the following result.

LEMMA 8. Either the system

[S�t,−S0]y∗ = 0 and y∗ > 0 (10)

has a solution y∗, or the system

[S�t,−S0]′θ ≥ 0, [S�t,−S0]′θ �= 0 (11)

has a solution θ , but never both.

An equivalent way to write (11) is

[S�t,−S0]′θ ≥ 0 and e′[S�t,−S0]′θ < 0 , (12)

where e = [1, 1, . . . , 1]′. Moreover, if θ satisfies (11), then θ is an arbitrage oppor-
tunity. Since there are no state price vectors, from Lemmas 7 and 8, there exists θ

satisfying (12). From Dax (1993) Theorem 1.1, it follows that if y∗ is a solution of

min ‖[S�t,−S0]y + [S�t,−S0]e‖2

subject to y ≥ 0 ,
(13)

and

θ∗ = [S�t,−S0]y∗ + [S�t,−S0]e
is different from zero, then θ∗ solves (12). Note that if θ∗ = 0 then

[S�t,−S0](y∗ + e) = 0 ,
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and, from Lemma 7, y∗ + e is a state price vector, a contradiction. Thus, θ∗ �= 0 is
an arbitrage opportunity. Finally, by using Dax’s Algorithm given in Appendix A,
we compute y∗ which solves (13).

Appendix A. Dax’s Algorithm and the Proof of Lemma 1

First of all we introduce a simple iterative algorithm due to Dax (1993) in order to
establish the existence of a point y∗ that solves (2). Moreover, it is possible to show
(Dax, 1997) that the algorithm ends in a finite number of iterations.

THE DAX ALGORITHM

Assume that

A = [A1A2 . . .Ak] ,
where Ai = Aei . We proceed by its ith iteration, i = 1, 2, . . . , which consists of
the following two steps.

Step 1: Let yi = [y1, y2, . . . , yk]′ ≥ 0 denote the current estimate of the solution
beginning of the ith iteration. Define

ri = Ayi − b .

If Cardinal Z(yi )c = 0, where Z(yi)c = {j : yj > 0}, or ri = 0 then skip to
Step 2. Otherwise, let Ai , the matrix whose columns are Al, with l ∈ Z(yi )c. For
simplicity we assume that

Ai = [As+1 . . .Ak],Z(yi ) = {1, 2, . . . , s} and Z(yi )c = {s + 1, . . . , k} .
Let the vector wi = [ws+1, ws+2, . . . , wk]′ solve the unconstrained least squares
problem

min ‖Aiwi − ri‖2 .

We note 0 solves this problem if and only if A′
iri = 0. In this case skip to

Step 2. Otherwise, define a nonzero search direction ui = [u1, u2, . . . , uk]′ by
the following rule

ul = 0 for l = 1, . . . , s and ul = wl for l = s + 1, . . . , k .

The next point is defined as

yi+1 = yi + νiui ,

where νi > 0 is the largest number in the interval [0, 1] that keeps the point yi+νiui
feasible. In other words, νi is the smallest number in the set

{1} ∪
{
−
(
yl

ul

)
: ul < 0 and l ∈ {s + 1, . . . , k}

}
.
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Step 2: In this step we have A′
iri = 0 which means that yi solves the problem

min ‖Ay − b‖2 (A.1)

subject to yl = 0 for l ∈ Z(y) (A.2)

and

yl ≥ 0 for l ∈ Z(y)c. (A.3)

To test whether or not yi is optimal, we compute an index j such that

(Aj )′ri = min{(Al)′ri : l ∈ Z(y)} .
If (Aj )′ri ≥ 0 then yi and ri satisfy (5). From Lemma 1 we have that yi solves (2)
and the algorithm ends in this case. Otherwise, the next point is defined as

yi+1 = yi −
(
(Aj )′ri
(Aj )′Aj

)
ej .

Note that

−
(
(Aj )′rn
(Aj )′Aj

)
> 0 ,

and this point solves the problem

min f (λ) = ‖A(yn + λej )− b‖2. �

Proof of Lemma 1. Assume that �∗ = [ψ∗
1 , ψ

∗
2 , . . . , ψ

∗
m]′ solves (3) and let

fi(λ) = ‖S�t(�∗ + λei )− S0‖2 = ‖λSi − θ∗‖2, for i = 1, 2, . . . , m .

Recall that Si is the ith column vector of the matrix S�t and θ∗ = S�t�∗ − S0.
Then, clearly, λ = 0 solves the problem

min fi(λ)

subject to ψ∗
i + λ ≥ 0 .

Therefore, since

d

dλ
fi(λ)

∣∣∣∣
λ=0

= 2(Si )′θ∗ ,

we have that ψ∗
i > 0 implies 2(Si )′θ∗ = 0, while ψ∗

i = 0 implies 2(Si)′θ∗ ≥ 0,
which constitutes

�∗ ≥ 0,S�tθ∗ ≥ 0 and (�∗)′S′
�tθ

∗ = 0 . (A.4)
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Conversely, assume that the above conditions hold, and let ( be an arbitrary point
in Rm such that ( ≥ 0. Let the vector ) = [η1, η2, . . . , ηm]′ be obtained from (

by the rule ) = (−�∗. Then ψ∗
i = 0 implies ηi ≥ 0, while (A.4) leads to

)′S′
�tθ

∗ ≥ 0 .

Hence, the identity

‖S�t(− b‖2 = ‖S�t�∗ − b‖2 + 2)′S′
�tθ

∗ + ‖S�t)∗‖2

shows that

‖S�t(− b‖2 ≥ ‖S�t�∗ − b‖2. �
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