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Abstract

In this paper we introduce a tensor subspace based format for the representation of a tensor in a
topological tensor space. To do this we use a property of minimal subspaces which allow us to describe
the tensor representation by means of a rooted tree. By using the tree structure and the dimensions
of the associated minimal subspaces, we introduce the set of tensors in a tree based format with either
bounded or fixed tree based rank. This class contains the Tucker format and the Hierarchical Tucker
format (including the Tensor Train format). In particular, any tensor of the topological tensor space under
consideration admits best approximations in the set of tensors in the tree based format with bounded tree
based rank. Moreover, we show that the set of tensors in the tree based format with fixed tree based rank
is an analytical Banach manifold. This local chart representation of the manifold is often crucial for an
algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems. However,
in our framework, the tangent (Banach) space at a given tensor is not a complemented subspace in the
natural ambient tensor Banach space. Therefore, we study the differential of the natural inclusion map
as a morphism between Banach manifolds. It allows us to discuss the Dirac-Frenkel variational principle
in the framework of topological tensor spaces.

2010 AMS Subject Classifications: 15A69, 46B28, 46A32.
Key words:Tensor spaces, Banach manifolds, Tensor formats.

1 Introduction

Tensor formats based on subspaces are widely used in scientific computation. Their constructions are usually
based on a hierarchy of tensor product subspaces spanned by orthonormal bases, because in most cases one
needs representations which are fitted to the special structure of the mathematical object under consideration.

Two of the most popular formats are the Tucker format and the Hierarchical Tucker format [11] (HT
for short). It is possible to show that the Tensor Train format [21] (TT for short), introduced originally by
Vidal [24], is a particular class of the HT format. An important feature of these formats, in the framework of
topological tensor spaces, is the existence of a best approximation in each fixed set of tensors with bounded
rank [6]. It allows to construct, on a theoretical level, iterative minimisation methods for nonlinear convex
problems over reflexive tensor Banach spaces [7].



It is well-known that the Tucker format is also well applicable to the discretisation of differential equations
in the framework of quantum chemical problems or of multireference Hartree and Hartree-Fock methods
(MR-HF) in quantum dynamics [19]. In particular, it can be shown that the set of Tucker tensors of fixed
rank forms an embedded finite-dimensional manifold [15]. Then the numerical treatment of this class of
problems follows the general concepts of differential equations on manifolds [10]. Recently, similar results
have been obtained for the TT format [13] and the HT format [23].

Some natural questions arise in the framework of topological tensor spaces. The first one is: is it possible
to introduce a class of tensors containing Tucker, HT (and hence the TT) tensors with fixed and bounded
rank 7 A second question is: if such a class exists, is it possible to construct a parametrisation for the set
of tensors of fixed rank in order to show that it is a true manifold even in infinite dimension? Finally, if the
answers to both questions are yes, we would like to ask the following question: is the set of tensors of fixed
rank an embedded submanifold of the topological tensor space, as ambient manifold, under consideration ?

The main goal of this paper is the study of the geometric structure of tensor representations based on
subspaces. The paper is organised in two parts mainly. The first one, from Sect. 2 to Sect. 4, is devoted of
preliminary definitions and results about, Banach spaces, Banach manifolds, Tensors spaces and the manifold
of full rank tensors. Finally, from Sect. 5 to Sect. 8, we give the contributions of this paper. More precisely,

e In Sect. 5, we introduce a generalisation of the hierarchical tensor format in order to include the Tucker
tensors (among others) in that class.

e In Sect. 6, we show that the set of tensors with fixed rank is an analytical Banach manifold and its
geometric structure is independent on the ambient tensor Banach space under consideration.

e In Sect. 7, we show that when we have a tensor Hilbert space, as ambient space, the set of tensors with
fixed rank is an embedded manifold whenever the norm of the ambient space is a uniform crossnorm
(e.g. the classical L2-norm and the Frobenius norm).

e In Sect. 8, we give a formalisation in this framework of the multi—-configuration time-dependent Hartree
MCTDH method (see [19]) in tensor Banach spaces.

2 Definitions and preliminary results
In the following, X is a Banach space with norm ||-||. The dual norm ||-|| . of X* is

lellx. = sup{le(@)| : 2 € X with |[zf|y <1} =sup{|e(@)|/[z]ly : 0# 2 € X}. (2.1)

By £(X,Y) we denote the space of continuous linear mappings from X into Y. The corresponding operator
norm is written as |||y, y -

Definition 2.1 Let X be a Banach space. We say that P € L(X,X) is a projection if P o P = P. In this
situation we also say that P is a projection from X onto P(X) parallel to Ker P.

From now on, we will denote P o P = P2. Observe that if P is a projection then Ix — P is also a
projection. Moreover, Ix — P is parallel to P(X) := Im P.

Observe that each projection gives rise to a pair of subspaces, namely U = Im P and V = Ker P such
that X = U @ V. It allows us to introduce the following two definitions.

Definition 2.2 We will say that a subspace U of a Banach space X is a complemented subspace if U is
closed and there exists V in X such that X =U @V and V is also a closed subspace of X. This subspace V
is called a (topological) complement of U and (U, V) is a pair of complementary subspaces.

Corresponding to each pair (U, V') of complementary subspaces, there is a projection P mapping X onto
U along V, defined as follows. Since for each x there exists a unique decomposition x = u + v, where u € U
and v € V, we can define a linear map P(u + v) := u, where Im P = U and Ker P = V. Moreover, P? = P.

Definition 2.3 The Grassmann manifold of a Banach space X, denoted by G(X), is the set of all comple-
mented subspaces of X.



U € G(X) holds if and only if U is a closed subspace and there exists a closed subspace V in X such
that X = U @ V. Then, by the proof of Proposition 4.2 of [5], the following result can be shown.

Proposition 2.4 Let X be a Banach space. The following conditions are equivalent:
(a) U € G(X).
(b) There exists P € L(X,X) such that P> = P and Im P = U.
(c) There exists Q € L(X,X) such that Q* = Q and Ker Q = U.

Let V and U be closed subspaces of a Banach space X such that X = U@ V. From now on, we will denote
by P,., the projection onto U along V. Then we have P, =1Ix — P, Let U, U’ € G(X). We say that

DV Veu UV -

U and U’ have a common complementary subspace in X, if X = U@ W = U’ @ W for some W € G(X).
The following result will be useful (see Lemma 2.1 in [3]).

Lemma 2.5 Let X be a Banach space and assume that W, U, and U’ are in G(X). Then the following
statements are equivalent:

(o) X=UasW =U &W, ie, U and U have a common complement in X.

(b) Pygwlvr : U — U has an inverse. Furthermore, if Q = (P, ! eaists, then Q is bounded and

Upw ‘U/)
Q = PU’GBW |U'
2.1 Banach manifolds

Definition 2.6 Let M be a set. An atlas of class C? (p > 0) on M is a family of charts with some indexing
set A, namely {(uq, My) : a € A}, having the following properties:

AT1 {My}aca is a covering of M.

AT2 For each o € A, (un, M) stands for a bijection uy, : My — Uy of M, onto an open set U, of a Banach
space Xy, and for any o and B the set uq(My N Mpg) is open in X,.

ATS3 Finally, if we let Mo, N\ Mg = Myp and ua(Mug) = Uag, the transition mapping ugouy' : Uss — Usa
is a CP-diffeomorphism.

Two atlases are said compatible if each chart of one atlas is compatible with the other atlas. One verifies
that the relation of compatibility between atlases is an equivalence relation.

Definition 2.7 An equivalence class of atlases of class CP on M is said to define a structure of a CP-Banach
manifold on M, and hence we say that M is a Banach manifold. If X, is a Hilbert space for all o € A, then
we say that M is a Hilbert manifold.

In condition AT2 we do not require that the Banach spaces are the same for all indices «, or even that
they are isomorphic. If X, = X for all a, we have the following definition.

Definition 2.8 Let M be a set and X be a Banach space. We say that M is a CP Banach manifold modelled
on X if there exists an atlas of class CP over M with X, = X for all a € A.

Example 2.9 FEvery Banach space is a Banach manifold (for a Banach space Y, simply take (Iy,Y) as
atlas, where Iy is the identity map on Y ). In particular, the set of all bounded linear maps L(X,X) of a
Banach space X is a Banach manifold.

If X is a Banach space, then the set of all bounded linear automorphisms of X will be denoted by
GL(X):={A € L(X,X) : A invertible }.

Example 2.10 If X is a Banach space, then GL(X) is a Banach manifold, because it is an open set in
L(X, X). Moreover, the map A~ A~ is analytic (see 2.7 in [22]).



Example 2.11 (Grassmann Banach manifold) Let X be a Banach space. Then, following [/], it is
possible to construct an atlas for G(X). To show that the atlas is an analytic Banach manifold, denote one
of the complements of U € G(X) by W, i.e., X =U @ W. Then we define the Banach Grassmannian of U
relative to W by

GW,X) ={VeGX): X=VaW}.

It is possible to introduce a bijection
Vygw : GW, X) — L(U,W)

as the inverse of
Viby : LU,W) — G(W, X),
defined by
Voew (L) = G(L) :== {u+ L(u) : u € U}.

Observe that WLy, (0) = U and G(L) & W = X for all L € L(U,W). It can be shown that the collection

{Yoew, G(W, X)}ueg(x) is an analytic atlas, and therefore, G(X) is an analytic Banach manifold. In
v
particular, for each U € G(X) the set G(W, X) e L(U,W) is also a Banach manifold.

Let M be a Banach manifold of class CP, p > 1. Let m be a point of M. We consider triples (U, ¢, v)
where (U, ¢) is a chart at m and v is an element of the vector space in which ¢(U) lies. We say that two of
such triples (U, o, v) and (V, %, w) are equivalent if the derivative of 1o =1 at ¢(m) maps v on w. Thanks to
the chain rule it is an equivalence relation. An equivalence class of such triples is called a tangent vector of
M at m.

Definition 2.12 The set of such tangent vectors is called tangent space of M at m and it is denoted by
T,.(M).

Each chart (U, ) determines a bijection of T,,(M) on a Banach space, namely the equivalence class
of (U, p,v) corresponds to the vector v. By means of such a bijection it is possible to equip T,,(M) with
the structure of a topological vector space given by the chart, and it is immediate that this structure is
independent of the chart selected.

Example 2.13 If X is a Banach space, then T,(X) =X for all z € X.
Example 2.14 Let X be a Banach space and take A € GL(X). Then TAo(GL(X)) = L(X, X).
Example 2.15 For U € G(X) we have Ty (G(X)) = L(U,W).

Example 2.16 We point out that for a Hilbert space X with associated inner product (-,-) and norm | - ||,
its unit sphere denoted by
Sx :={x e X :|z|| =1},

is a Hilbert manifold of codimension one. Moreover, for each x € Sx, its tangent space is

T.(Sx) = span {z}* = {2/ € X : (x,2/) = 0}.

3 'Tensor spaces

Concerning the definition of the algebraic tensor space , ®?=1 V; generated from vector spaces V; (1 < j < d),
we refer to Greub [8]. As underlying field we choose R, but the results hold also for C. The suffix ‘@’ in

a ®?:1 V; refers to the ‘algebraic’ nature. By definition, all elements of

V.=, V;

j=1



are finite linear combinations of elementary tensors v = ®?:1 o) (v(j) € VJ) .

The following notations and definitions will be useful. We recall that L(V, W) is the space of linear maps
from V into W, while V' = L(V,R) is the algebraic dual of V. For metric spaces, L(V,W) denotes the
continuous linear maps, while V* = £(V,R) is the topological dual of V.

Let D :={1,...,d} be the index set of the ‘spatial directions’. In the sequel, the index sets D\{j} will
appear. Here, we use the abbreviations

Vi = G®Vk , where ® means ® . (3.1)

ki k£ keD\{j}

Similarly, elementary tensors @), oy v*) are denoted by vl
For vector spaces V; and W, over R, let linear mappings A, : V; — W, (1 < j < d) be given. Then the
definition of the elementary tensor

d d d
A=@4: V= QY - W= . QW
Jj=1 Jj=1 j=1
is given by
d d
A ®U(j) = ® (Ajv(J)) (3.2)
j=1 j=1

Note that (3.2) extends uniquely to a linear mapping A : V. — W.

Remark 3.1 (a) Let V := a®j:1 Vi and W := a®?:1 W;. Then the linear combinations of tensor
products of linear mappings A = ®?:1 A; defined by means of (8.2) form a subspace of L(V,W):
d

Q) L(V;, W;) € L(V,W).
j=1

(b) The special case of Wj =R for all j (implying W = R) reads as a®d:1 Vicv.
(c) If dim(V;) < oo and dim(W;) < oo for all j, the inclusion ‘C’ in (a) and (b) can be replaced by ‘="
This can be easily verified by just checking the dimensions of spaces involved.

Often, mappings A = ®?:1 A; will appear, where most of the A; are the identity (and therefore
V; =W;). If Ay € L(Vi,, Wy,) for one k and A; = id for j # k, we use the following notation:

id[k] QA =id® .. ®1dRA,RIdR ...R1id € L(V,V[k] Qg Wk), (33&)
k—1 factors d—k factors

provided that it is obvious which component k is meant. By the multiplication rule (®j:1 Aj) o (®;1:1 Bj) =
®j:1 (A; o B;) and since id o A; = A; oid, the following identity! holds for j # k:
= (idm X Aj) o (id[k] ® Ak) (3.3b)
= (id[k] ® Ag) o (idm & Aj)
(in the first line we assume j < k). Proceeding inductively with this argument over all indices, we obtain

d
A=A, = (idy @A) oo (idjg ® Aq).

Jj=1

INote that the meaning of id(;) and id) may differ: in the second line of (3.3b), (idp ® Ax) € L(V, Vg ®a Wk)
and (id[j] ® Aj) €L (V[k] Ra Wkav[j,k] Ra Wj Qa VV}C)7 whereas in the third one (id[j] ® Aj) € L(V,V[j] Ra Wj) and
(idjy ® Ag) € L (Vi) @a Wy, Vijp @a W) @a W) - Here Vij 1 = o« Qe 56} Vi



If W; =R, ie, if Aj = ¢; € V/ is a linear form, then idj;; ® ¢; € L(V,Vy;) is used as symbol for
d®...®i1dRe; ®id® ... ® id defined by

(idpj ® v5) <® (k )> = p;( (j))~®fu(k). (3.3¢)
k#j

Thus, if ¢ = ®j 195 € ®J 1 Vj, we can also write

o =®%_0; = (idy @ ¢1) oo (idg ® Pa). (3.3d)

Consider again the splitting of V. = ®j:1 Vj into V = V; ®, V[; with V{;; := , ®k¢j Vi.. For a linear
form ;) € ij], the notation id; ® ¢; € L(V,V;) is used for the mapping

(id; ® ) <®v( )> = cp[j](®v(k)) W), (3.3¢)

ki

If o) = Qpzj Pk € a @y Vi is an elementary tensor?, P <®k¢j v(k)) =3 | PR (v™®)) holds in (3.3e).
Finally, we can write (3.3d) as

P =010 =pjo(idj@epy) forl<j<d (3.3f)

Definition 3.2 We say that V.| is a Banach tensor space if there exists an algebraic tensor space V and
a norm ||| on 'V such that V. is the completion of V with respect to the norm ||-||, i.e.,

————1Il

d
Vi =11 QY =« @, Vi
j=1

If V. is a Hilbert space, we say that V. is a Hilbert tensor space.
Next, we give some examples of Banach and Hilbert tensor spaces.

Example 3.3 For [; CR (1 <j <d) and 1 < p < oo, the Sobolev space HN'P(I;) consists of all univariate
functions f from LP(I;) with bounded norm?

N 1/p
s, = (3 [ 1) (3.42)
n=0 I;

whereas the space HN”’(I) of d-variate functions on I =17 x Iy x ... x I; C R? js endowed with the norm

1/p
vy =( 3 / 0" 117 dx) (3.4b)

0<|n|<N

with n € N¢ being a multi-index of length |n| := 2?21 n;. Forp > 1 it is well-known that HN?(I1;) and
HN2(I) are reflexive and separable Banach spaces. Moreover, for p = 2, the Sobolev spaces HN(Ij) =
HN2(1;) and HN (1) :== HN2(I) are Hilbert spaces. As a first ezample,

d
HNP(T) = Q) HY 7 (1)
j=1

is a Banach tensor space. Examples of Hilbert tensor spaces are

d
D=, QL) and HY —HHNQ@H ) for N €N.

2Recall that an elementary tensor is a tensor of the form v; ® --- ® vq.
31t suffices to have in (3.4a) the terms n = 0 and n = N. The derivatives are to be understood as weak derivatives.



Let ||-[|;, 1 < j < d, be the norms of the vector spaces V; appearing in V = , ®;l:1 V; . By ||| we denote
the norm on the tensor space V. Note that ||-[| is not determined by ||-[|;, but there are relations which are
‘reasonable’.

Any norm ||-|| on a®?:1 V; satisfying

d ; d . ]
H X, ”mH =1[_ w2l foral o ev; (1<) <d) (3.5)

is called a crossnorm. As usual, the dual norm to ||-|| is denoted by [|-||*. If ||-|| is a crossnorm and also ||-||*
is a crossnorm on ®j:1 Vi, le,

d N d , . _
| Qe =TI, eVl foral e e vy (1 <j<a). (3.6)
|||l is called a reasonable crossnorm.

Remark 3.4 Eq. (3.5) implies the inequality || ®?:1 vi|l < H?Zl lvjll; which is equivalent to the continuity
of the multilinear tensor product mapping*

Q- %(w-nj) H( ® - ||) (3.7)

defined by @ ((v1,...,v4)) = ®?:1vj, the product space being equipped with the product topology induced by
the mazimum norm ||(v1,...,vq)| = maxi<j<q ||v;ll;-

Proposition 3.5 Assume that the tensor product map (3.7) is continuous. Then it is also Fréchet differ-
entiable and its differential is given by

d
D(®(U1,...,Ud)) (wl,...,wd):Zm@...@vj,l Qwj ®Ujp1 ® - vg
J=1

Proof. Clearly, D @ (v1,...,v4) is a multilinear map. If we assume that the tensor product map (3.7) is
continuous, that is || ®?:1 uj]| < CH?:1 ||lu;|; for some C' > 0, then

1D @)1, -, va) (wi, ..., wa |<CZIIU1II1 Mvi—1llg—allwsllllojeallen -~ - llvalla

v
an 1|| ka max ||wk||k

ol 1<k<d

shows that D @(v1,...,vq) is also continuous. Finally,

||®(U1+h17"' ,Ud+hd)_ (Uh"' , Ud )_D®(U17"' 7Ud)(h1a"' ahd)H

d
= Z ”Tilaiz(hiwhw Z 11,12,%3 hn)hlzvh’ ) +T1:---vd(h1" "’hd)”
i1,40=1 i1,%2,i3=1
11 <ig i1 <t2<13
d d
Z Til,iz(hinhiz)” + Z || 11,92, la(hh’hlzﬁhm)” +...+ HTI,...,d(h‘la-'whd)”
i1,i2=1 i1,i2,i3=1
11 <ig 11 <i2<ig

d
4Recall that a multilinear map 7" from X i=1(Vj, | -1l;) equipped with the product topology to a normed space (W, || -||) is
continuous if and only if || T|| < oo, with

T(v1,... Vd
ITl= s T vl = sup 1T, yva)l = sup  ATCL vl
(W15e0q) (V1500a) w1yevg) il llvalla
@i o)li<1 ol <1l valla<1



where the T; are multilinear maps defined by T;, . i (hiy, ..., hi) = ®?:12j with z; = h; if j €

Tyeerlh

{i1,...,1x}, and z; = v otherwise. Since these multilinear maps have at least two arguments, we have
||T11gﬂk(h74177h'bk)” <C H ”hJHJ H ||UjHj
J€{iv, ik} JE{L, di\ {1, ix}
<C iy Ty Il
= gﬁgd 172515 H (17115 H [0l
je€{iz, ik} JE{L,..,dP\ {1, ik }
=Cll(h,-- k)l TT 10l 11 ol
Jj€{ia,sir} JE{L,..,d\ {41, ik}

which proves that “Til"”'(’}i’;‘ (flflh’;)'l"hi’“)u tends to zero as (hi,...,hq) — 0, and therefore ) is Fréchet differ-
entiable and the proposition follows. [

Grothendieck [9] named the following norm ||-||,, the injective norm.

Definition 3.6 Let V; be a Banach space with norm ||-||, for 1 <i <d. Then forv eV =, ®?:1 V; define
-l by

- [(P1®p2® ... 0 ¢a) (V)|
Ivll, :=sup 0
Hj:l ||‘PjHj

It is well-known that the injective norm is a reasonable crossnorm (see Lemma 1.6 in [17]). Further
properties are given by the next proposition (see also 4.2.4 in [12]).

:O;égijVj*,lgjgd}. (3.8)

Proposition 3.7 The following statements hold.

(a) The injective norm is the weakest reasonable crossnorm on V, i.e., if ||-|| is a reasonable crossnorm on

V, then
[RINe IV (3.9)
(b) For any norm ||-|| on 'V satisfying ||-||\, < |||, the map (3.7) is continuous, and hence Fréchet differ-
entiable.
Below, we will need a further assumption on the norm ||-||. A norm ||-|| is a uniform crossnorm if it is a

crossnorm (cf. (3.5)) and satisfies

(@)

forall Aj € L(V;,V;) 1 <j<d)andallve, ®?:1 V; . The uniform crossnorm property implies that |||
is a reasonable crossnorm (cf. [20]). Hence, condition (3.9) is ensured (cf. Proposition 3.7a).

d
< (H ||Aj||vjevj) vl (3.10)
j=1

Definition 3.8 Let X be a Banach space and || - || be a norm defined over a®?:1Vj . For each A €
L (a ®?:1 Vi ,X) we will denote by A € L (H‘H ®?:1 Vi ,X) its unique extension. Recall that Aly = A.

Observe that if || - || is a uniform crossnorm then for all A; € L(V},V;) (1 < j <d) the map ®?:1 A;
belongs to L(V .1, Vi)
4 The manifold of multilinear full rank tensors

Now, we assume that dim V}, < oo for 1 < k < d. Before introducing the set of multilinear full rank tensors,
we recall the definition of the ‘matricisation’ (or ‘unfolding’) of a tensor in a finite-dimensional setting.



Definition 4.1 For j € D ={1,...,d}, the map M is defined as the isomorphism

M QL Ve — Vi ®a V), |
QL 0@ o v @il with vl = @, v,

In the finite-dimensional case of V, = R"*, an element of the tensor space V; ®, V}; of order 2 may be con-
sidered as a matrix from R"*"1, where nj; = Hk# ng. Then, M; maps a tensor entry v[ii,...,4j,...,1q]
into the matrix entry (M;(v)) [¢5, (41,..-,%j-1,%j+1,---,%4)]. As long as we do not consider matrix proper-
ties which depend on the ordering of the index set, we need not introduce an ordering of the (d — 1)-tuple

(7:17 .- '7ij—17ij+1a s aid)'

Next, we restrict the considerations to finite-dimensional Vj. Since tensor products of two vectors can
be interpreted as matrices, the mapping M is named ‘matricisation’ (or ‘unfolding’). The interpretation of
tensors v as matrices enables us to transfer the matrix terminology to v. In particular, we may define the
rank of M;(v) as a property of v.

Definition 4.2 Let dim(Vy) < oo (k € D). For all j € D we define

rank;(v) := rank(M;(v)) . (4.1)

Assume dim(V;,) < oo (k € D). Since M;(v) € RV *¥TLiz; dim(Vi) 565 rank (M, (v)) = dim(V;) then
det (M;(v)M;(v)T) # 0.
It allows to introduce the following definition.

Definition 4.3 Let v € R™ > *"d  We say that v is a multilinear full rank tensor if and only if
d
I det (M;(v)M;()T) # 0. (4.2)
j=1

We denote by RI1* %" the set of multilinear full rank tensors of R™ *"*"4_ Since the determinant
is a continuous function, R?** %™ ig an open set in R™*"*"4 and hence a finite-dimensional manifold.
Moreover, the tangent space Ty (R7?% " %"d) = RM %" X"d for gl v € RP1**"d (cf. Definition 2.12).

5 Minimal subspaces and the representation of tensors in the tree
based format

We introduce the abbreviate TBF for ‘tree based format’. For instance, a TBF tensor is a tensor represented
in the tree based format, etc. The tensor based rank will be abbreviated by TB rank. The underlying tree
will be defined in Sect. 5.2.

5.1 Minimal subspaces

Let V; be a vector space for j € D, where D is a finite index set, and consider a tensor space Vp :=
a ®jeD V; . In order to avoid trivial cases, we assume #D > 2.

Definition 5.1 For a tensor v € 4 ®§i:1 Vj , the minimal subspaces are denoted by U™ (v) (j=1,...,d)
and defined by the property thatv € 4 ®;l:1 Uj implies UM (v) CU; (j=1,...,d), whilev € , ®?:1 Urin(v) .

A useful result is the following.

Srank(M,(v)) = dim(V};) implies that dim(V;) < [1x; dim(Vy) and that M;(v) has full rank. The latter estimate is a
very natural assumption.



Lemma 5.2 Letu,v € , ®j:1 Vj be such that dim U™ (v) = dim U™ (u) for 1 < j < d. Then
d .
ue QUM (v)
j=1

if and only if U]mi“(u) = U]mi“(v) forji=1,2,....d.

Proof. Clearly, if U]min(u) = Uj‘-“in(v) forj=1,2,...,d,thenu € , ®j=1 Ujmin(v) holds. On the other hand
assume that u € , ®j:1 Uit (v) . We have

Ui (u) c U™ (v) for 1 <j <d.
Since dim U™ (v) = dim U™ (u) for 1 < j < d, we obtain the desired equality and the lemma follows. —m

The next characterisation of U jmin (v) is due to [6]. To this end, we introduce the following two subspaces:
Uj ) = {lid; @ e)¥) : oy € a @), Vi) (5.1a)

Uil (v) = {(idj R @) (V) ey € (a ®k¢j Vk)/}- (5.1b)

In the case of normed spaces Vi, we may consider the subspace

UJ.IH(V) = {(idj ® <p[j])(v) D P € a ®k¢j Vi } . (5.1c)

Finally, if Vi;; = o @, 2 Ve is a normed space, we can define

UV (v) = {(idj © ) (V) Py € V@]} . (5.1d)

Note that, in general, the four spaces 4 ®k¢j Vi, (a®k¢j Vi)s a ®k¢j V¥ and ij] may differ.

Theorem 5.3 For anyveV =, ®j:1 Vj , the following statements hold:
(a) There exist minimal subspaces U]I-ni“(v) (1 <j <d), whose algebraic characterisation is given by

Ut (v) = Uf (v) = U (v).

J

(b) Assume that V; and Vi; = ®k¢j Vi are normed spaces for 1 < j < d. Then

Urt(v) = UjI(v) = U]-H(v) = UjHI(V) = UJ-IV(V).

(c) If dimV; < oo for j € D, then .
dim U™ (v) = rank;(v).

The minimal subspaces are useful to introduce the following sets of tensor representations based on
subspaces. Fix r = (ry,...,rq) € N?. Then we define the set of Tucker tensors with bounded rank r in

V=,V by
aj=1Vj 4
Te(V) := {VGV:dimU]mm(v)grj,1§j§d},

and the set of Tucker tensors with fixed rank r in V = , ®?:1 V; by

M (V):={veV: dimUjmi“(v) =r;,1<j<d}.
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Then M, (V) C 7:(V) C V holds.

We have introduced the minimal subspace UJ*™(v) C Vj for a singleton {j} C D :={1,2,...,d}. Instead
we may consider general disjoint and non-empty subsets a; C D. For instance, let v € a®je pVi =
Vo, ® Vo, ® Vi, where ap = {1,2}, as = {3,4}, and a3 = {5,6,7}. Then we can conclude that there are
minimal subspaces U (v) for v = 1,2,3, such that v € , ®7_, UM"(v) . The relation between Urin(v)
and U (v) is as follows.

Proposition 5.4 Let v € Vp = ;&
U;“i“ (v) for j € a are related by

jep Vi and 0 # a C D. Then the minimal subspaces Unin(v) and

Umm ® Umm (52)
JEQ

An obvious generalisation of the previous result is given below.

Corollary 5.5 Letve Vp =, ®]€D . Assume that 0 # «; C D are pairwise disjoint fori=1,2,...,m.
The minimal subspace UM (v) for o := |J]~, oy satisfies

Umm ® Umm ) (53)

The algebraic characterisation of URn(v) is analogous to that given in Theorem 5.3. Formulae (5.1a,b)
become

umin(y { (ida ® @) D Pqe € ®]€ac ; } (5.4)
{ (ido @ Ppe) (V) 1 pue € (a®j€ach)/},

where (idy ® @40 )(®d W)y = (Pa (®7eacv(j))) Qrea v'¥). The analogues of (5.1c,d) apply as soon as
norms are defined on V and o Q V;

JEQac

From now on, given () # a C D, we will denote Vo := 4 @, co Vi s 7o := dim U™ (v) and UR™(v) :=
span {v}.

Example 5.6 Let us consider D = {1,2,3,4,5,6}, then
6 3 5
:a®‘/j: a®‘/j Qa a®‘/j ®a‘/6:V123®aV45®a‘/6~
j=1 Jj=1 Jj=4

It is well-known (see [6]) that v € , ®?:1 U™ (v) and v € UBg(v) ®q U™ (v) ®4 U™ (v). From Propo-
sition 5.4 we have

Ugin( )C Uln;?’n( ) Umm( ) mm ®Um1n (55)
Moreover, we can write
(D) (123) (45) (6) D 123 X745 XT
v= Z Z Z 02123l45l6 U 55 ®ui45 ®uia ’ C( ) € R*mgx st
i123=11445=116=1
where

W, = Z Z Z 0(123) ( )®u1(22) @ul(g), c(123) ¢ RT123X7T17273

11237111213 'Ll
’Ll 122 11,3 1

11



{1,2,3,4,5,6}

{1v {22 {8 {4 {55 {6}
Figure 5.1: A dimension partition tree related to UB"(v) C Qjen Ujmin(v) .

and
45 (4 5 Fas XTaTs
w;,, = E E 1(45’)1415 u;, ) ® u( ), C15) g RrasxTars,

ia=11i5=1

Z Z Z Z (D) o) ) ®6
D) 123 45 (k)
0212314016 1123,%1%213 240,1410 U; Qg )

7/6 1 i123:1 145 1 k=1

Finally

where u € Urin(v) for 1 < k <6.

5.2 Dimension partition tree and TB rank
Since (5.5) can be represented by means of a tree (see Figure 5.2), it motivates the following definition.
Definition 5.7 The tree Tp is called a dimension partition tree of D if

(a) all vertices a € Tp are non—empty subsets of D,

(b) D is the root of Tp,

(c) every verter a € Tp with #a > 2 has at least two sons. Moreover, if S(a) C 2P denotes the set of
sons of o then o = Ugeg(a) B where N 3" =0 for all B,5" € S(a), B # 5.

If S(a) = 0, v is called a leaf. The set of leaves is denoted by £(Tp). An easy consequence of Definition 5.7
is that the set of leaves £(Tp) coincides with the singletons of D, i.e., £L(Tp) = {{j} : j € D}.

Example 5.8 Consider D = {1,2,3,4,5,6} and recall that US™(v) C o ®;cp U™ (v) . Take
Tp = {D,{1},{2}, {3}, {4}, {5}, {6}} and S(D) = {{1},{2}, {3}, {4}, {5}, {6}}
(see Figure 5.1). Then S(D) = L(Tp).
Example 5.9 In Figure 5.2 we have a tree which corresponds to (5.5). Here D = {1,2,3,4,5,6} and
Tp ={D,{1,2,3},{4,5}, {1}, {2}, {3}, {4}, {5}, {6}},

S(D) = {{1,2,3},{4,5},{6}}, S({4,5}) = {{4}, {5}}, S({1,2,3}) = {{1}, {2}, {3}}-

Moreover
L(Tp) = {{1}, {2}, {3}, {4}, {5}, {6}}.
Observe that for each v € Vp we have that (dim U™ (v))4e20\ (g} Is in N2#7-1)

Definition 5.10 Let Tp be a dimension partition tree of an indexr set D. Then for each v.€ Vp =
o @ jep Vi we define its tensor based rank (TB rank) by (dim Unin(v)),er, € N#1D,

In order to characterise the tensors v € V p satisfying (dim U™ (v)) e, = t, for a fixed t := (74 )acty, €
N#Tp we introduce the following definition.

Definition 5.11 We will say that t := (rq)aecTy € N#Tp s an admissible tuple for Tp, if there exists
v € Vp\ {0} such that dim U™ (v) = r, for all « € Tp \ {D}.
Necessary conditions for v to be admissible are

ro <dimV; for a={j} € L(Tp),

rp=1 for « = D. (5.6)

12



{1,2,3,4,5,6}

{1,2,3} {4,5} {6}

N\

{1 {2y By 4 {5}

Figure 5.2: A dimension partition tree related with (5.5).

5.3 The representations of tensors of fixed TB rank

Let us consider for a given dimension partition tree Tp, a fixed admissible tuple t € N#7P. Take v € Vp
such that dim U™"(v) = 7, and consider a basis {ugz) 11 < iy <1y} of UPN(v) for each a € Tp \ {D}.

. X o
Since v € o Que5(p) Ua' (V) , there exists CP) ¢ R; 5™ ™ guch that

v = Z ((Z))QES(D) ® u . (5.7)

1<ig <rq aeS(D
aeS(D)

If S(D) = L(Tp), then (5.7) gives us the classical Tucker representation. Assume S(D) # L(Ip). Now,
for each p € Tp \ {D} such that S(u) # 0 we have U™ (v) C 4 R sesin) Ug™(v) and then, there exists

cw) e R *(Xses@ ™) such that

(v) _ (u) (8)
u = Z i) ses o ® u; (5.8)

1<ig<rg BES(1)
BES(a)

(). q <, <r,} is abasis, we can identify C#) with a matrix, also denoted by C(#),

in the non-compact Stiefel manifold R." *(Mpesin ) , which is the set of matrices in R™* (Msesc@ ™) whose

rows are linearly independent (see 3.1.5 in [1]). From (5.7) and (5.8) we obtain the Tucker representation of
v, when S(D) # L(Tp), as

for 1 <y, < ry. Since {u;

V= Z Z O((i’igaeS(D) H Oi(:tv)(iﬁ)ﬁes(u) ® U(k)' (59)

1<ip<ry, | 1<ia<ra ne€Tp\{D} keL(Tp)
keL(Tp) \ «€S(D) S(p)#0

The procedure, given a basis of UM (v) for a € Tp \ {D}, used to obtain (5.9) is completely characterised
by a finite tuple of tensors

¢ = (O(a))OZETD\E(TD) c >< RTGX(Xﬁes(a) 7"5)7
OAETD\,C(TD)

where (D) g RS€5D ™ ang o) ¢ R (Msesi rﬁ), for each € Tp \ {D} such that S(u) # §. From
now on, to simplify the notation, we introduce for an admissible t € N”P the product vector space

R := X R (Xses@ma)
a€Tp\L(Tp)

and its open subset, and hence a manifold,

RE = )@ c R - o) ¢ R*Xaesw) "and CW) ¢ R:“X(Hﬁes(u) ms) '
* for each u € Tp \ {D} such that S(u) # 0.

13



Definition 5.12 Let Tp be a given dimension partition tree and fiz some tuple v € N™P for Tp. The set of
TBF tensors of bounded TB rank t is defined by

BT:(Vp):={veVp: dmUM(v) <r, forallac€Tp }, (5.10)
and the set of TBF tensors of fixed TB rank v is defined by
FT(Vp) :={v € BT(Vp) : dim UM (v) =1, for alla € Tp} . (5.11)

Note that F7T(Vp) = 0 for an inadmissible tuple t. For v,s € N'P we write s < ¢ if and only if s, < 74
for all & € Tp. Then we have

BT«(Vp)=|J FT«(Vp).

s<t
Next we give some useful examples.
Example 5.13 (Tucker format) Consider the partition tree over D := {1,...,d}, where S(D) = L(Tp) =
{{j}:1<j<d}. Let (rp,r,...,7q) be admissible, then rp =1 and r; < dimVj for 1 < j < d. Thus we

can write
BT(LTIwH,Td)(VD) = 7—(7“1,-..,7“4)(VD)

and
]:T(l,rl,...,rd)(VD) = M(rl,m,rd)(VD)'

Example 5.14 (Tensor Train format) Consider a binary partition tree over D :={1,...,d} given by
Tp={DA{j}:1<j<dh{{j+1...,d}:1<j<d-2}}
In particular, S({j,...,d}) ={{7},{j +1,...,d}} for 1 <j < d—1. This tensor based format is related to
the following chain of inclusions:
UIBin(V) c Ugnin( ) Ra nnn ( ) c Umm( ) Ru Uénin( ) Ru mm ) C--C, ® U;pin(v)
jeD
Finally, from Theorem 6.24 of [12], the following result can be shown.

Theorem 5.15 Let V., = ||

and Tp be a dimension partition tree of the index set D. Then for each admissible tuple v € N'P for Tp the
following statements hold.

®,ep Vi s be a tensor Banach space with a norm satisfying || -|p 2 ||l

a) The set BT (Vp) is weakly closed in V.
-l
(b) Assume that V., is reflevive. Then for each u € V., there exists v.€ BT(Vp) such that

lu—vl= "~ min fu—wl|.
weBT (V)

6 The manifold of TBF tensors of fixed TB rank

Now, assume that | - [ is a norm on Vo = « @, V; , for each a € Tp \{D}, and Vo | = .. Qjca Vi
is its corresponding tensor Banach space. Let
G(TD) = >< G(VO‘\H\a) = {u = {Ua}aeTD\{D} :Uq € G(VH”a)}
acTp\{D}

be the product Banach manifold. Fix v € FT(Vp) and consider a basis {u(a) 1 < iy <74} of UM (v)
for each a € Tp \ {D} such that v can be represented by means (5.7) and (5 8). Thus v is completely
characterised by € € R} and ({u o) : 1 <io < 7a})aerp\ (D} Assume a decomposition into a direct sum

Vo, = UM (V) @ Wi (v)
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for a € Tp \ {D}. From Example 2.11 we recall for each « € Tp \ {D} the existence of the set
GWI™(v),Va, ) ={Ua € G(Va,,.) : Us @ W (v) = Vg, }
and the bijective map Wymin (v)gwmin(v) © G(Wmin(v), Vo) — L(UMn(v) Whin(v)). Clearly, the map

T, X GWER(v), Vo, )= X LOF(v), Win(v)),
acTp\{D} acTp\{D}

defined as Wy := X e\ (p} Yumin(v)@wmin(y) i also bijective. Furthermore, it is a local chart for 4(v) :=
{UP™(v)}Yaerp\{py in G(Tp) such that ¥, (U(v)) = 0 := (0)aer,\(p}- To simplify the notation, for each
v € FT+(Vp) we will use

Lrp(v):= X LUF"(v), W™ (v))
aeTp\{D}

= (€= {La}acro\(py * Lo € £ (UZ(v), W2 (v))},

which is a closed subspace of the Banach space

Ly = X L(Vay, Vay.,):
a€Tp\{D}
and _
GEv) = X  GWF(V),Va,.),
acTp\{D}

which is a local neighbourhood of 4(v) in the manifold G(Tp). Moreover, {4 = ¥, (£), with U, = G(L,) =
{ua + La(uy) 1 u, € U (v) }, for each a € Tp \ {D}. A useful result is the following.

Lemma 6.1 For each o € Tp\{D}, the set L(U™"(v), Wit (v)) is a complemented subspace of L(Vay s Vo)
and hence for each v € Vp, the set L1, (v) is a complemented subspace of L.

Proof. Observe that the map

Mo : £ (Vo Vayy,) = £ (Vo Vay,)
defined by

Ha(La) = Pwpinw)ovgv) La Pupinvyewynv)
is a projection onto L(UM"(v), Wit (v)). [

Now, we introduce the map
Azy, : FTo(Vp) — G(Tp), w = U(w) := (Ug"™(W))aerp\ (D},
and observe that for each w € FT(Vp) we have
A7 (Ary(w) ={u € FT(Vp) : U™ (u) = UF™(w) for all o« € Tp \ {D}} .
We will define the local neighbourhood of v, denoted by U(v), in FT.(Vp) as
UW) = Ail) (G(U(v))) C FT(VDp).
Observe that for each w € U(v) we have
V(Jtu.”u = U(Tm(w) D W{;nin(v),

where U™ (w) € G(W2™(v), V|..), for each a € Tp \ {D}. Since

Yyminw)ewmin )
o~

GWa™(v), Vay ) = LUF™(v), W™ (v)),
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there exists a unique L, € L(UDM(v), Whin(v)) such that
iy (o) (UM (w)) = Le
for each a € Tp \ {D}. Moreover, we claim that
Umin(w) = span{La(uEZ‘)) + ugj) 1<y <7ro}
holds for all & € Tp \ {D}. To prove the claim, we only need to show that
{Lo(u?) +uf? 1 <o < 1o}

are linearly independent in UM"(w). If the last statement is not true, we may assume without loss of
generality that

La ( +u1 Z)‘k I(ca))v

ie.,

Z AeLa( Z s
k=
The left-hand side is in W™ (v) and the right-hand side is in U™ (w). Since Wit (v) N UM% (w) = {0}
we then have a contradiction and the claim follows.
For each u € A}[l) (A7, (w)) we fix the basis {WE:) = ugj) + L, (ugj)) 1 <y <1y} of UMM (w) for each
a € Tp \ {D}. Then we define &y : A;El) (Ar, (w)) — RE by

bw(u) = €(u) = (C' (W) aerp\£(1p)s

h
where - Z C(D) (11) ® (L ( (a))+u(a))
- (ia)aes(p) o
1<i0<rq acS(D)
aeS(D)
and, if S(D) # L(T), for each u € Tp \ {D} such that S(u) # () we have
B
Lu(uz(.i‘)) +u§5> - Z Ci(ff,)(i/a)ggs(u)(u) ® (LB( Eﬁ)) + ugﬁ))7
1<ig<rg BES (1)
BeS(n)

for 1 < 4, < ry. Clearly, {w is one-to-one. On the other hand, given 8 € R}, we can construct u €
A;; (A7, (w)) satisfying B = €(u). Thus we can conclude that &, is a bijection which is independent of w.
It allows us to define a local chart Oy : U(v) — RE x L, (v) by

Ov(w) := (§w (W), ¥y 0 Ary, (W) = (€(w), ¥y (U(w))) -
More precisely, Oy (w) = (€(w), £) if and only if

D « o
w= > O W) Q) Lalul)+ul), (6.1)
1<in <ra acS(D)
aeS(D)

where, if S(D) # L(Tp), for each p € Tp \ {D} such that S(u) # @ we have

( ) ( ) _ (1) (8) (8)
Ly(a zfj) u,, = E : Ci;ﬁ(ia)aes(u)(w) ® (Lﬁ(uiﬂ )+uiﬁ ) (6.2)
1<ig<rg BES (1)
BeS(n)
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for 1 < i, < r,. Proceeding iteratively along the tree, we obtain, for S(D) # L(Ip), a Tucker format
representation of w given by

_ (D) (w) (k) (k)
w= Z Z O(ia)qesw) (w) H Ciu7(i/3)ﬂes(u) (w) ® (Lk(uik )+ Uy, )-
keL(Tp

1<ix<rg | 1<ia<ra n€Tp\{D} )
keL(Tp) a€eS(D) S(p)#£0
a¢ L(Tp)

The next result shows that the collection {Oy,U(V)}ver7 (v,) is an atlas for FT(Vp).

Theorem 6.2 Assume that Vs a Banach space with norm ||| for o € Tp\{D}. Then the collection
{0v,U(V)}verT. (vp) is an analytic atlas for FT(Vp). Furthermore, the set FT(Vp) of TBF tensors
with fired TB rank is an analytical Banach manifold.

Proof. Clearly, {U(V)}verr.(vp) is a covering of FT(V) and AT1 is true. Take (&, £) € R x L1, (v). By
using (6.1)-(6.2), we can construct w € U(v) such that Oy (w) = (€, £), and in consequence Oy, is surjective.
Now, consider that ©y(u) = Oy (w). Since URin(u) = UM% (w) for all a € Tp \ {D} and €(v) = &(w),
also from (6.1)-(6.2) we can conclude that w = u. In consequence AT2 holds. Finally for v,u € FT.(Vp)
consider U(v,u) :=U(v) NU(u). Observe that w € U(v,u) if and only if

U™ (w) € GWa™ (u), Vo, )NGWE™(v), Vo, ) for a € Tp.
Then we need to show that
0, 005! : 0, U(V,u)) — O, (U(v,u))
is a diffeomorphism. Take (&, £) € ©y (U(v,u)), such that O,(w) = (€, £) for some w € U(v,u) and

0,00, (¢, L) =0,(w) =(B,M).

Observe that _
Us(w) = Span{ugj) + La(ul(-:")) 1<y <70},

Lo(u (a))Jru(a): Z o' (w) ® (Ls(u (3))+u(5))

ia,(ig)Bes(u)
1<ig<rg BES(a)
BES(a)

Um (w) = span{ul® + No(u{”) : 1 <io <74}

and
@ [e% @ B
Na(ui?) +ui = 37 B, o, 0 @ (Na(wl) +ui)
1<ig<rg BeS(a)
BES(ar)

ra X (X ges(a)7s)

holds for 1 < i, <1, and a € Tp\{D}. Then it is possible to construct an isomorphism S, : R, —

X r
R, *(Xsese ma) such that S, (C(®)) = B(® for each a € Tp \ {D}. Hence the map & : Rt — RY given by
G(€) = B is also an isomorphism and we can write

0y 00, (€, £) = (6(¢),MN) = (&(¢), ¥y 0 Ar, (W))).

Since Az, (w) = U(w) and UM (w) = \I/U},,,,,(u)@wm,n(u)(

o) for each a € Tp \ {D}, we obtain
0y 00, (€,2) = (6(¢), (Tyvo ¥,") (2)).

From [ ] we know that \IIUmm(v)@Wmm(v) oWU u) fI‘OHl

Umm (u)@Wm‘r‘

\IlUglin(u)@ngin(u) (G(Worénln(u), Vo‘H”a) N G(W;ﬂln(v), VQHHQ )) - ﬁ(U&nln(u), Worél’lln(u))
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to
Wymin (vy@wmin(v) (G(W;‘”“(u),VQH_HQ) N G(Wé“ln(v)7VaH_Ha)) C LU (v), W™ (v))

is an analytic diffeomorphism for each a € Tp \ {D}. Then ¥, o W' is an analytic diffecomorphism from

qlu< X (G(W;ﬂin(u),Va‘Q)QG(Wgﬁi”(v),Va‘a))> C L7, (u)

aeTp\{D}
to
¥, ( X (GWP™(u),Vq, ) ﬂG(W;“i“(v),Vall_lla)> C Lty (v).
acTp\{D}
Clearly, AT3 holds and the theorem follows. [

By using the geometric structure of local charts for the manifold F7.(v), we can identify its tangent
space at v with Ty (F7T(Vp)) :=R* x L1, (v). We will consider Ty (FT(Vp)) endowed with the product

norm
o= Y 100+ Y alwgemevgie:
a€Tp\L(Tp) a€Tp\{D}

with || - || the Frobenius norm.

Note that L(Va, ., Va,.,) endowed with the norm || - ”V‘*M “Va, is a Banach space. Thus, even if
V)i is a Hilbert space for all @ € Tp \ {D}, the set Lr,, is a Banach space. The following lemma allows

us to identify L, € £ (UD™(v), W2 (v)) with a vector in Win(v)dim U™ (™) for each a € Tp \ {D}.
Lemma 6.3 Assume that Vo = ||, &,co Vi is a Banach space for a € Tp \ {D}. Then forl each
vEVy=aQjc,V; the Banach space L(UDR(v), W2in(v)) ds linearly isomorphic to WRin (v)dimUs™(v),

Proof. Since v € V,, then dimUM"(v) = r, < oo and every L, € L (UM (v),WZin(v)) is a finite
rank operator, i.e., dim L, (U™ (v)) < co. In consequence, £ (U™ (v), W2i?(v)) is linearly isomorphic to
Umin(v)* @, Wit (v) by means the canonical isomorphism

= (Sl ol ) ) = 3l
k=1

k=1

3

(see, e.g., Proposition 16.8 in [5]). Moreover, UM (v)*®, WX (v) is linearly isomorphic to R™ ®, Wi (v) =
Wmin(v)re (simply consider (zj);%; ® w = (zxw);> ;) and the lemma follows. |

Corollary 6.4 Assume that Vo is a Hilbert space with norm || - ||lo for o € Tp \ {D}. Then FT+(Vp)
is an analytical Hilbert manifold.

Proof. Lemma 6.3 allows us to identify each L, € £ (U™ (v), W2 (v)) with a (wgi));z:;“ € Wmin(y)re,
where wga) = La(uf_)) and UMin(v) = span {ufy),...,uf,y}, for « € Tp \ {D}. Thus we can identify each
(¢, L) e U(v) with a pair
W) eRix X WFH(v)™,
aeTp\{D}

where 20 := ((wg‘j))Sa 1" )aerp\(p}- We assume that RE x X ,epp\ (py WI™ (V)" is an open subset of the

Sa=1

Hilbert space R* X X yep,\ (py W™ (v)" endowed with the product norm

Hew = > Ic%he+ > > 1wl

a€Tp\L(Tp) a€Tp\{D} sa=1
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It allows us to define local charts, also denoted by O, by

O, R x X WRR(v)Te — U(v),
aeTp\{D}

where O, (€,20) = w. Here w is given by (6.1)-(6.2) putting La(ul(-:)) = ng), 1<iq <rqand a€Tp)\

{D}. Since each local chart is defined over an open subset of the Hilbert space R* X X nerp\ (py Wa™(v)"™,
the corollary follows. [

7 FT.Vp) as an embedded submanifold

Let V., = Vipl"”D be a tensor Banach space, where || - ||p is a norm, and consider in F7.(Vp) the
topology induced by the norm || - ||p. The natural ambient space for FT.(Vp) is the Banach tensor space
V|.jp- Since the natural inclusion i : F7.(Vp) — V|, given by i(v) = v, is a homeomorphism onto
its image, we will study 7 as a map between Banach manifolds. To this end we introduce the following
definitions.

Definition 7.1 Let X and Y two Banach manifolds. Let F' : X — Y be a map. We shall say that F is a C"
morphism if given x € X there exists a chart (U, @) at © and a chart (W,v) at F(x) such that F(U) C W,
and the map

YoFopt:pU) = (W)
is a C"-Fréchet differentiable map.

To describe 4 as a morphism, we proceed as follows. Given v € FT(Vp), we consider U(v), a local
neighbourhood of v, and then

. _ D «@ «@
1007 RIX L1y (v) = Ve (€8 37 ) L R (Lalui?) +ul?),
19%(9«31 a€S(D)
aceS(D

where for each u € Tp \ {D} such that S(u) # 0 we have

() (n) _ E : (k) (8) (8)
L“(uiur )+uiu B Ciu,(iﬁ)ﬁes(u) ® (Lﬁ(uiﬁ )+ui5 )
1<ig<rg BES (1)

BES (1)

for 1 <4, <.
Our next step is to recall the definition of the differential as a morphism which gives a linear map between
the tangent spaces of the manifolds involved with the morphism.
Definition 7.2 Let X and Y two Banach manifolds. Let F : X —Y be a C" morphism, i.e.,
poFopt:pU)—p(W)

is a C"-Fréchet differentiable map, where (U, ) is a chart in X at x and (W,v) is a chart in' Y at F(x).
For x € X, we define

ToF : To(X) — Trpe)(Y), v [(oFop ') (o).
Assume that i 0 ©7! is Fréchet differentiable, then Tyi: R* x Lg, (v) — V||,, is given by
Tyi(€, L) = [(i0051) (0v(v)](C, £).

The next lemma describes the tangent map T+ 1.
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Lemma 7.3 Let v € FT.(Vp) be such that Oy(v) = (€(v),0), where €(v) = (C)perp\o(rp): © =
(O)QGTD\{D} (md
U™n(v) = span {u(a) 1<in <ra}

for a € Tp \ {D}. Then the following statements hold.

(a) Assume that the tensor product map @ is continuous. Then the map i o O7! from RY x Lr,(v) to
V.| is Fréchet differentiable, and hence Tyi € L (Tyv(FT+(VD)), Vilp) -

(b) Assume (€,£) € Ty(FT(Vp)), where € = (C)perp\r(rn) and £ = (La)acrp\(p}- Then w =
Tvi(éﬁ, 2) if and only

w= > O . Q@ u+ > > L | Lue & ul |,

1<iq<rq a€S(D) n€S(D) 1<iq<rq a€eS(D)
aeS(D) aeS(D) aFp

where for each v € Tp \ {D} with S(v) # 0,

L= 3 P @ ul e Y Y e e @ ul?

1<ig<rg BES(y) d€S(y) 1<ig<rp B#6
BES(y) BeS(7) BeS(7)

holds for 1 <1, <r,.
Proof. To prove statement (a), observe that for each u, € U™ (v), a € Tp \ {D}, the map
Dy, : LIUZ™(V), W™ (v)) = Wa™(v),  La = La(ua),

is linear and continuous, and hence Fréchet differentiable. Clearly, its differential is given by [}, (La)](Ha) =
H,(u,). Thus, if the tensor product map ) is continuous, by Proposition 3.5 it is also Fréchet differentiable.
Then, by the chain rule, the map O is also Fréchet differentiable. Since Tyi(€, £) = [(i0071)/(€,0)](¢, £),
(a) follows. Statement (b) follows by using the chain rule. |

Next we recall the definition of an immersion between manifolds.

Definition 7.4 Let F': X — Y be a morphism between Banach manifolds and let x € X. We shall say that
F is an immersion at x, if there exists an open neighbourhood Xy of x in X such that the restriction of F
to X1 induces an isomorphism of X1 onto a submanifold of Y. We say that F' is an immersion if it is an
immersion at each point of X.

For manifolds modelled on Banach spaces we have the following criterion for immersions (see Proposition
2.2 in [16]).

Proposition 7.5 Let X, Y be Banach manifolds of class C? (p > 1). Let F : X =Y be a CP morphism and
x € X. Then F is an immersion at x if and only if T, F is injective and T, F (T4 (X)) is a complemented
subspace.

A related concept with an immersion between Banach manifolds is the following. Assume that X and Y
are Banach manifolds and let f : X — Y be a C” morphism. If f is an injective immersion, then f(X) is
called an immersed manifold of Y.

Recall that there exists injective immersions which are not isomorphisms onto manifolds. It allows us to
introduce the following definition.

Definition 7.6 An injective immersion f : X — Y, i.e., a homeomorphism onto f(X) with the relative
topology induced from Y is called an embedding. Moreover, if f : X — Y is an embedding, then f(X) is
called an embedded submanifold.
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From Lemma 7.3(b) we known that Tyi is injective. Thus, to show that ¢ is an inmersion, and hence an
embedding, we need to prove that Ty (F7.(Vp)) is a complemented subspace of V. ,. In the next result,
that will be useful, we prove that, if || - |p is a uniform crossnorm, then Ty is a linear isomorphism from
Ty(FT+(Vp)) to alinear closed subspace of V|.||,. It allows us to identify the tangent space Ty (F7(Vp))
with a closed subspace of V.

Theorem 7.7 Let V.|, be a tensor Banach space such that || - ||p is a uniform crossnorm. Then for each
v € FT(Vp), the set Tyi(Ty(FT(Vp))) is a closed subspace of V.|, linearly isomorphic to the Banach
space Ty (FT(Vb)).

Proof. To prove that Tyi (T (F7.)) is a closed subspace in V|, take a sequence

(Cn, £,) = ((Cﬁa))aeTD\L(TDy (L&"))aeTD\{D}) ;

in Ty(FT(Vp)) such that w,, := Tvz((Cn,Sn)) — w asn — oo. We want to show the existence of a
(¢, L) € Ty(FT.Vp) such that w = Tyi((€, £)). To this end, from Lemma 7.3, we may assume

W= 3 (s, @+ ST N (o | L@@ (@) ul |

1<ia<rq aeS(D) HES(D) 1<ia<ra aeS(D)
aeS(D) aeS(D) aFtp

where for each v € Tp \ {D} such that S(v) # 0, we have

F(n) (4, (1Y : (8) (W) f (n) (5)
L“/n (uiw ) - Z (Cn iy,(ig)pes(y) ® u + Z Z in,(i8) ges(v) L5 ® ulfs )
1<ig<rs BeS(n 5€S(v) 1<ip<rs 6
BeS(y) BeS(7) BES(7)
for 1 <i, <r,.
To prove the theorem we will show that for each y € T such that S(y) # 0, there exist C(7) € RX aes() Ta

and (L) uesty) € Xaes(y) LIURR(v), WRR(v)) such that C5” — CO) and (L) ues(r) = (Du)ues(y) as
n — oo. In consequence, taking

(é:v 2’) = ((O(Q))QETD\L(TD)a (LOé)OéETD\{D}) )
we have (€,,£,) — (€, £) as n — oo and the continuity of Tyi proves the theorem.

To show this, we proceed inductively along the tree. First, assume v = D. To simplify the notation, we

denote® ) ) (@
Z<CT(LD)) = Z (Cr(LD))(ia)aes(D) ® uij
1<in <re a€eS(D)
aeS(D)
and

F(n)y . F (1) (qq(1) (@)
2(Li) = Y (O eeso | L) Q) wy]
1<ia<rq aeS(D)
aeS(D) aFtp

=z(CP)) + Z z(LEL”))

r€S(D)

for each p € S(D), such that

6We separate the case D from other nodes (see later), since the notations are different.
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We introduce the following linear and bounded maps

S(D)) _ ) ) S(D)) ._ . . (S(D))
P( D) = ® PUgam(v)@Wg]m(v), ,be D) = PW:“‘“(V)@UE““(V) ® P[H] R
aeS(D)

where

(D)), _ . ,
Pu = Q) Pupmmswyn):
BeS(D) ptu

Clearly, P3(P)) (w,,) = z(CE(lD)) and P&S(D))(wn) = Z(LEZL)), for each p € S(D). Hence

pD) 4 Z pﬁS(D)) (Wn) = Wy
HES(D)

Since w,, — w we have

2CP) = 3 (CP) sy Q) ul® = PEP) (w),
1<iq<ro aeS(D)
aeS(D)

Then there exists O'(P) € R «es®) s guch that

PEED(w) = 3 (CPN ey, Q) ul,

1<ia<ra QES(D)
aeS(D)
and C.'r(LD) = C®) ag n — co.
On the other hand,
o D o o
AL = 3 CDesy | LN © Q) Wil | = P w),
1<ia<rq aeS(D)
aeS(D) aFtp

for each p € S(D). We claim, for each fixed u € S(D), the existence of

{wi, -1 <4, <ru} C W:L“in(v)

such that D) )
(S(D)) — .
PH (W) = Z C(ia)ﬁesm)wl# ® ® Wig -
1<ig<rg BES(D)
BeS(D) B#u

To prove the claim, observe that

Z(Lgl)) € 7—(7’a)aes(D) W;Lnin(v) @a | a ® Ugﬁn(v) ’
5E5(D)

which is a weakly closed set in V| ,, and hence closed. In consequence, there exist
{wi, 1 1<iy <ru} C Wf}lin(v)

and S(P) € RXaes) T gyuch that

(S(D)) — (D) / (B)
P}L (W) - Z S(ig)ﬁes(p)wiu ® ® uiﬂ :

1<ip<rg BES(D)
Bes(D) B
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Fix 1 <4, < r, and let (ia)acs(py be such that i, = i),. Now, take ¢ Pl € a®a€§é(D) |
atp
?lir) (Qaes(p ul® )) =1 and ¢ (Qacs(p) uiff’) = 0 for all (if,)aes(p) # (ia)aes(p)- Since
a;ﬁu aFp
z(L/(L")) - ’PlSS(D))(W) — 0,
. r(n S(D D r(n D
then (id,, ®¢[i;"]) (z(LL )) _,P/S | ))(W)) = 0€ V. Thus, C( ) es(D)L’(L )(ui“) - S((ia))aes(m i
that if C =0 then S = 0. Otherwise,
es(D) (ta)aes(p)

s
L(n)(u(u))_> (ia)acs(p) w

U (D) p?
(ia)aes(D)
D
when C( ) # 0. Introduce
aES(D)
5(D)
(la)QES(D) if (D) #
I (D) Zu (ia)aes(p)
b Ge)aes(D)
otherwise,

such that

" Tt is clear

and the claim follows. Finally, define the linear map L, € LU (v), Wmn(v)) by Lu(uiu) := w;, for each

1<, <1y, and hence

(S(D)) _ (D) ; ) (B)
Pﬂ (W) = Z C(iﬁ)ﬁes(p) L#(um)@) ® Wig

1<ig<rg BES(D)
peS(D) B

Moreover, Lftn) — L, as n — oo.

Let u € Tp \ {D} such that S(u) # (0. Then ¢ 5 ¢ and Lg,n) — L., for all v € S(u) as n — oo. In

particular, we have
LI () = Ly ()
for 1 <, <r,. Observe that for each v € S(u) such that S(vy) # 0 we write

L)) =2, (C0) + 3 2, (1),

3eS(vy)
where .

20 (C0) = Y (e, @ ul®
1<ia<ra (XGS(’Y)
aesS(y)

and

2, (L) = Y (C)i iyaesey | LI @ ul®

1<iq <rq aeS(y)
a€eS(v) aFtp

for each p € S(v). Thus we can repeat the proof substituting D by =, obtaining C7 and (L(;)(;es(,y) such

that CY — C7, Lg") — Lg, where for each § € S() such that S(6) # @ we have

@)= Y ¢ @l Y Y e u{”) ® ul?

1<ig<rg BES () n€S(y) 1<ip<rg
BES(S) BES(Y) Bes(v)
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for 1 < i5 < rg. This ends the proof of the theorem. [}

Since in a Hilbert space every linear subspace is closed if and only if it is complemented, by Proposition 7.5
and Theorem 7.7, we obtain the following result.

Corollary 7.8 Let V||, be a tensor Hilbert space such that ||-||p is a uniform crossnorm. Then FT(Vp)
is an embedded submanifold of V). ,. Moreover, the canonical scalar product (8.9) is uniform.

Finally, we also have the next corollary.

Corollary 7.9 Let V|, be a reflevive tensor Banach space such that || - | p is a uniform crossnorm and

take v € FT(Vp). Then for each 0 € V|, there exists Viess € Tvi (Tv(FT(Vp))) such that

f | = : 5 vl -

o= Voestll = i o a= (7.1)

8 On the Dirac—Frenkel variational principle on tensor Banach
spaces

8.1 Model Reduction in tensor Banach spaces

In this section we consider the abstract ordinary differential equation in a reflexive tensor Banach space
V|.|», With a uniform crossnorm || - || p, given by

u(t) = F(t,u(t)), for t >0 (8.1)

where we assume ug # 0 and F : [0,00) x V|, — V|||, satisfying the usual conditions. We want (OI':
'would like’) to approach u(t), for t € I := (0,¢) for some € > 0, by a differentiable curve t — v,.(¢) from I
to FTr(Vp), where vt € NP is such that v,.(0) = vq satisfies

lup —vollp= min  JJup—w|lp= min |ug— w|p.
weFT.(Vp) weBT(Vp)

Our main goal is to construct a Reduced Order Model of (8.1)—(8.2) over the Banach manifold F7(Vp).
Since F(t,v,(t)) in V), for each t € I, and Ty, ;)i (Tvr(t)(]—"Tt(VD))) is a closed linear subspace in V| .||, ,
we have the existence of a v,.(t) € Ty, ()i (Ty, ) (FT(Vp))) such that

V() = F(t, v, ()lp = _min [v(t) = F(t, v (t)lp,
V() ETy, (1)i(Tv,.(ty(FT:(VD)))

It is well-known that, if V., is a Hilbert space, then v,.(t) = Py ) (F(t, v,(t))), where

Py,.t) = PT‘,T(t)i(’JI“,T(t)(.FT, (Vo)) @ Ty, (6)i(To, (0) (FT: (VD))"

is called the metric projection. It has the following important property: v, (t) = Py ) (F(t, v.(t))) if and
only if
(Vi (t) = F(t, v (1), v(t))p = 0 for all v(t) € Ty, )i (Ty, 1) (FT(VD))) .

The concept of a metric projection can be extended to the Banach setting. To this end we recall the

following definitions. A Banach space X with norm || - || is said to be strictly convezx if ||x + y||/2 < 1 for
all z,y € X with ||z|| = |ly| = 1 and = # y. It is uniformly convex if lim, o ||€n — yn|| = 0 for any two
sequences {2y }nen and {yn tnen such that [, = [lyall = 1 and limy o0 |2 + yn /2 = 1. It is known that

a uniformly convex Banach space is reflexive and strictly convex. A Banach space X is said to be smooth if
the limit

e+ gl e

im

t—0 t
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exists for all z,y € U := {z € X : ||z|| = 1}. Finally, a Banach space X is said to be uniformly smooth if its

modulus of smoothness
T T —
o(r) = sup {I + 1yl + |z — 7yl 1}7T>0’
z,ycU

2

satisfies the condition lim,_,o p(7) = 0. In uniformly smooth spaces, and only in such spaces, the norm is
uniformly Fréchet differentiable. A uniformly smooth Banach space is smooth. The converse is true if the
Banach space is finite-dimensional. It is known that the space LP (1 < p < o) is a uniformly convex and
uniformly smooth Banach space.

Let {-,-) : X x X* — R denote the duality map, i.e.,
(z, f) == f(=).
The normalised duality mapping J : X — 2% is defined by
J(x) = {f € X"z, ) = ||| = (|.F]")*}-

Notice that, in a Hilbert space, the duality mapping is the identity operator. The duality mapping J has
the following properties (see [2]):

(a) If X is smooth, the map J is single-valued;
(b) if X is smooth, then J is norm-to-weak* continuous;

(c) if X is uniformly smooth, then J is uniformly norm—to—norm continuous on each bounded subset of
X.

Assume that V||, is a reflexive and strictly convex tensor Banach space with a uniform crossnorm |||/ p.
For F(t,v,(t)) in V. |,,, with a fixed t € I, it is known that the set

{Vr(t) Ve () = F(t,ve(@)llp = ~min Iv(t) — F(t»Vr(t))HD}
V(t)eTvr(t)l(Tvr(t)(]:Tl'(VD)))

is always a singleton. Let P, () be the mapping of V , onto Ty ()i (Tv,‘(t) (}"Tt(VD))) defined by
Vi (t) := Py, ) (F(t, v,(t))) if and only if

[V (t) = F(t, v ()lp = _min [v(t) = F(t, v (t)llp-
V() ETy, (1)i(Tv,.(ty(FTe(VD)))

It is also called the metric projection. The classical characterisation of the metric projection allows us to
state the next result.

Theorem 8.1 Assume that V.|, is a reflezive and strictly convex tensor Banach space with a uniform
crossnorm || - ||p. Then for each t € I we have

Vi (t) = Py, ) (F(t, vi (1)) (8.3)
if and only if

(5 (1) = ¥ (8), T(E (v, () = ¥ (1))) > 0 for all¥(t) € Ty, (i (Tu, (o (FTe(VD)) . (84)

An alternative approach is the use of the so-called generalised projection operator (see also [2]). To
formulate this, we will use the following framework. Assume now that V|, is a reflexive, strictly convex
and smooth tensor Banach space with a uniform crossnorm || - ||p. Following [14], we can define a function
¢ Vo X Vi —> R by , ,

o(u,v) = [lullp = 2(u, J(v)) + [Ivlp,
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where (-, ) denotes the duality map and J is the normalised duality mapping. It is known that the set

{W(f) 1oV (1), F(t, v (1)) = min ¢(V(f)7F(tavr(t)))}

V(OETy, (1)i(Tv, () (FTe(VD)))

is always a singleton. It allows us to define a map Il () : V|, — Ty, )i (']Tvr(t) (th(VD))) by v,.(t) :=
HV,,,(t)(F(t, v,-(t))) if and only if

SV, (), F(t, v, (1)) = _min o(V(1), F(t, vr(1)))-
v(t) ETV,,.(t)l(Tv,,. ) (FT- (VD)))

The map Ily (4 is called the generalised projection.

Remark 8.2 Emphasize also that, in general, the operators Py, ) and Il ) are nonlinear in Banach (not
Hilbert) spaces.

Again, a classical characterisation of the generalised projection give us the following theorem.

Theorem 8.3 Assume that V., is a reflexive, strictly conver and smooth tensor Banach space with a
uniform crossnorm || - ||p. Then for each t € I we have

Vi (t) = Iy, ) (F(t, v (1)) (8.5)
if and only if
(o (8) = ¥(8), J(B(E, v, (1)) = T (5 (5) = 0 for all ¥(t) € Ty, ()i (Tv, (FTe(VD)).  (8.6)
The next corollary is a consequence either of Theorem 8.1 or Theorem 8.3.

Corollary 8.4 Assume that V)., is a tensor Hilbert space with a uniform crossnorm | -||p. Then for each
t € I we have

o (t) = Py, (o) (F(E, v, (1)) (8.7)
if and only if

() = F(t, ve(£), ¥(£)p = 0 for all ¥(t) € Tyqyi (Tyy(FTe(VD))) . (8.8)

8.2 The time—dependent Hartree method
Let (-, ), be a scalar product defined on V; (1 < j < d), i.e., V; is a pre-Hilbert space. Then V =, ®?:1 V;

is again a pre-Hilbert space with a scalar product which is defined for elementary tensors v = ®j=1 v and
w = ®?:1 w) by

d d d
(v, w) = <®v<j>,®w<j>> =11 <v(j),w(j)>j for all v@, w@ € V;. (8.9)
j=1 j=1 j=1

This bilinear form has a unique extension (-,-) : V x V. — R. One verifies that (-,-) is a scalar product,
called the induced scalar product. Let 'V be equipped with the norm ||-|| corresponding to the induced scalar

product (-,-). As usual, the Hilbert tensor space V.| = | ®?:1 V; is the completion of V with respect
to ||-||. Since the norm |-|| is derived via (8.9), it is easy to see that ||-|| is a reasonable and even uniform
Crossnorm.

Let us consider in V. a flow generated by a densely defined operator A € L(V| ., V|.;|). More precisely,
there exists a collection of bijective maps ¢, : D(A) — D(A), here D(A) denotes the domain of A, satisfying

(1) $o = ldv
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(ii) @i =@y 0@y, and
(ii) for up € D(A), the map t — ¢, is differentiable as a curve in V), and u(t) := ¢, (uo) satisfies

it = Au, (8.10)
u(0) = uo. (8.11)

In this framework we want to study the approximation of a solution u(t) = ¢,(ug) € V| by a curve
vi(t) :== A(t) @4, v;(t) in the Hilbert manifold M. 1)(V), also called in [19] the Hartree manifold. The
time—dependent Hartree method consists in the use of the Dirac—Frenkel variational principle on the Hartree
manifold. More precisely, we want to solve the following Reduced Order Model:

Vi (t) = Py, t)(Av,(t)) for t € I, (8.12)
v,-(0) = vo, (8.13)

with vg = Ag ®§l (j) € M(,...1)(V) being an approximation of ug’. From Corollary 8.4, for each t > 0
we would like to ﬁnd Vi (t) € Ty, )i (Ty,.y(Mq,..1)(V))) such that

(¥ () = Av,(£),%(8)) = 0 for all ¥(t) € Ty, (i (Ty, (5 (Mq,.0 (V) (8.14)
v, (0) = vo = Ao @, v, (8.15)

and where, without loss of generality, we may assume Hvéj ) |l; =1for1 < j <d. Afirst result is the following.

Lemma 8.5 Let v € C'(I,U(vq)), where v(0) = vo € M1, 1)(V) and (U(vo),Oy,) is a local chart for vq
in M. 1)(V). Assume that v is also a Ct-morphism between the manifolds I C R andU(vq) C M, 1y (V)

such that v(t) = A(t) ®?:1 v;(t) for some A € CY(I,R) and v; € C1(1,V;) for 1 < j <d. Then

d d
=) ®’Uj(t) + A1) Zoj(t) ® Q) v (t) = Tyri(Tev(1)). (8.16)

ke

Moreover, if vi(t) € Sy,, i.e., |[vj(t)ll; =1, fort € I and 1 < j < d, then 0;(t) € Ty, )(Sy;) fort € I and
1<j<d

Proof. First at all, we recall that by the construction of U(vg) it follows that iji“(vo) = ijin(v(t))
and that Ujmi“(vo) = span{v(()j)} is linearly isomorphic to U]’»“in(v(t)) forallt € I and 1 < j < d. Assume
Oy, (v(t)) = (A(t), L1(t), ..., La(t)), i.e

d

t) ) (id; + L;(t)) (v§),

j=1

where A € C'(I,R\ {0}), L; € C'(I,L(UM"(vo), W"™(vy))) and (id; + Lj(t))(v(()])) e UM (v(t)) for
1 <j <d. We point out that the linear map Tyv : R — Ty (M. 1)(V)) is characterised by

Tev(1) = (Ov, 0 v)'(t) = (A1), L (1), ..., La(t)). (8.17)
Since L; € C'(I, L(UM(vo), W™ (vg))) then Ljc COI, L(U™™ (vo), W™ (vg))). Observe that U™ (vq)

and Uf‘i“(v(t)) have iji“(vo) as a common complement. From Lemma 2.5 we known that

Umin(v(t)) UM (v(t)) — U™ (vo)

P[]Jmin (VO)@WJgnin (VO)

is a linear isomorphism. We can write

Lj (t) = L] (t)PUJmm(VO)@WJmm(VO) and LJ (t) = Lj (t)PUJI-“i"(Vo)@W;ﬂin(Vo)’

"Indeed, v can be chosen as the best approximation of ug in M(l

,,,,,
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and then in (8.17) we identify L;(t) € LU (vo), WM (vy))) with
L (1) Puymin (v yaswmin (vo) lumin o ey € LU (v(2)), WM (vo)).-

Introduce v;(t) := (id; + Lj(t))(v(()j)) for 1 < j <d. Then

L (0)(05(8)) = L (8) Pysn vg)yomw s (vl (v oy (05 + L) (0§7)) = L3 (0)(0)

holds for all £ € I and 1 < j < d. Hence

0;(t) = L () (v§") = L;(t) (v;(1)) (8.18)

holds for all t € T and 1 < j < d. From Lemma 7.3(b) and (8.17), we have

d
To@i(Tev(1) = A1) ® 0 (8) + A1) D L (0)(v (1) © Q) vk (t),

Jj=1 k#j

and, by using (8.18) for v(t) = A(t) ®_, v;(t), we obtain (8.16).

To prove the second statement, recall that U™ (v(t)) = span{v;(t)} and V; = U™ (v(t)) ® W™ (vq)
for 1 < j < d. Then we consider
W™ (vo) = span {v; (1)} = {u; € V; « (uj,v(t)); = 0} for 1 < j < d,

and hence (v;(t)),v;(t)); = 0 holds for 1 < j < d. From Remark 2.16, we have (01(¢),...,04(t)) €
C(I, ijl Ty, () (Sv;)), because of W;ni“(vo) =Ty, )(Sy;) for 1 < j < d. ]

Before stating the next result, we introduce for v,.(t) = A(t) ®?:1 v;(t) the following time dependent

bilinear forms
ak‘(t;'v') : Vk X Vk i R7

ak(t; 2k, Yk) == <A (Zk ® ®Uj(t)) ) (yk ® ®”j(t)) >
J#k J#k

for each 1 < k < d. Now, we will show the next result (compare with Theorem 3.1 in [19]).

by

Theorem 8.6 (Time dependent Hartree method) The solution v,.(t) = \(t) ®;l=1 v (t) for (vi(t),...,v4(t)) €

X9_1 Sy, of

V() = Py, 1) (Av,(t)) fort € I, (8.19)
v, (0) = vo, 8.20)
satisfies
(05 (t), 105 (t)); — a;(t;v5(t),w;(t)) = 0 for all w;(t) € Ty;1)(Sy;), 1<3j<d,
and

() = A exp ( /O (A (9 05(8)) vy (5) ds) .

Proof. From Lemma 8.5 we have Ty, ) (M@, 1)(V)) = R x X?Zl Ty, t)(Sy;), Thus, for each w(t) €
Tyt)i (Ty) (M1,...1)(V))) there exists (B(t), w1 (t), ..., we(t)) € R x X;'i:1 Ty, (+)(Sv; ), such that
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Then (8.14) holds if and only if

ADBE) + A D | (05(8),105(8)); — (AR vs(8), e (1) @ Q) v(?))
j=1 s=1 k#j
d d
—AMOBOAR) v (1), @) vi() =0,

) ) d d

Bt [ A() - )‘<t)<A®Uj(t)a®vj(t)> (8.21)
d d

+A(t)? (03(8), i (1)) — (AR ws (1), 15 (t) © Q) uw(t)) | =0 (8.22)

j=1 s=1 k#j

holds for all 3(t) € R and (tr (t), ..., wq(t)) € X;-lzl Ty, (1)(Sv; ). If A(t) solves the differential equation

>
—~
o~
~—
I

(A (®?:1Uj(t)) a®?:1“j(t)> A(t) (8.23)
A0) = o, (8.24)

A0 = oo ([ (4 (@) o) ds)

then the first term of (8.22) is equal to 0. Therefore, from (8.22) we obtain that for all j € D,

d
(0(8), g (£))5 — (A QD ws (1), 105 (1) ® Q) un(t)) =0,

k#j
that is,
(05(£), 1 (1)) — a; (t; v;(£), w; (t)) = 0
holds for all w;(t) € T, )(Sy;), and the theorem follows. |
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