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Abstract

In this paper we introduce a tensor subspace based format for the representation of a tensor in a
topological tensor space. To do this we use a property of minimal subspaces which allow us to describe
the tensor representation by means of a rooted tree. By using the tree structure and the dimensions
of the associated minimal subspaces, we introduce the set of tensors in a tree based format with either
bounded or fixed tree based rank. This class contains the Tucker format and the Hierarchical Tucker
format (including the Tensor Train format). In particular, any tensor of the topological tensor space under
consideration admits best approximations in the set of tensors in the tree based format with bounded tree
based rank. Moreover, we show that the set of tensors in the tree based format with fixed tree based rank
is an analytical Banach manifold. This local chart representation of the manifold is often crucial for an
algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems. However,
in our framework, the tangent (Banach) space at a given tensor is not a complemented subspace in the
natural ambient tensor Banach space. Therefore, we study the differential of the natural inclusion map
as a morphism between Banach manifolds. It allows us to discuss the Dirac-Frenkel variational principle
in the framework of topological tensor spaces.

2010 AMS Subject Classifications: 15A69, 46B28, 46A32.
Key words:Tensor spaces, Banach manifolds, Tensor formats.

1 Introduction

Tensor formats based on subspaces are widely used in scientific computation. Their constructions are usually
based on a hierarchy of tensor product subspaces spanned by orthonormal bases, because in most cases one
needs representations which are fitted to the special structure of the mathematical object under consideration.

Two of the most popular formats are the Tucker format and the Hierarchical Tucker format [11] (HT
for short). It is possible to show that the Tensor Train format [21] (TT for short), introduced originally by
Vidal [24], is a particular class of the HT format. An important feature of these formats, in the framework of
topological tensor spaces, is the existence of a best approximation in each fixed set of tensors with bounded
rank [6]. It allows to construct, on a theoretical level, iterative minimisation methods for nonlinear convex
problems over reflexive tensor Banach spaces [7].
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It is well-known that the Tucker format is also well applicable to the discretisation of differential equations
in the framework of quantum chemical problems or of multireference Hartree and Hartree-Fock methods
(MR-HF) in quantum dynamics [19]. In particular, it can be shown that the set of Tucker tensors of fixed
rank forms an embedded finite-dimensional manifold [15]. Then the numerical treatment of this class of
problems follows the general concepts of differential equations on manifolds [10]. Recently, similar results
have been obtained for the TT format [13] and the HT format [23].

Some natural questions arise in the framework of topological tensor spaces. The first one is: is it possible
to introduce a class of tensors containing Tucker, HT (and hence the TT) tensors with fixed and bounded
rank ? A second question is: if such a class exists, is it possible to construct a parametrisation for the set
of tensors of fixed rank in order to show that it is a true manifold even in infinite dimension? Finally, if the
answers to both questions are yes, we would like to ask the following question: is the set of tensors of fixed
rank an embedded submanifold of the topological tensor space, as ambient manifold, under consideration ?

The main goal of this paper is the study of the geometric structure of tensor representations based on
subspaces. The paper is organised in two parts mainly. The first one, from Sect. 2 to Sect. 4, is devoted of
preliminary definitions and results about, Banach spaces, Banach manifolds, Tensors spaces and the manifold
of full rank tensors. Finally, from Sect. 5 to Sect. 8, we give the contributions of this paper. More precisely,

• In Sect. 5, we introduce a generalisation of the hierarchical tensor format in order to include the Tucker
tensors (among others) in that class.

• In Sect. 6, we show that the set of tensors with fixed rank is an analytical Banach manifold and its
geometric structure is independent on the ambient tensor Banach space under consideration.

• In Sect. 7, we show that when we have a tensor Hilbert space, as ambient space, the set of tensors with
fixed rank is an embedded manifold whenever the norm of the ambient space is a uniform crossnorm
(e.g. the classical L2-norm and the Frobenius norm).

• In Sect. 8, we give a formalisation in this framework of the multi–configuration time–dependent Hartree
MCTDH method (see [19]) in tensor Banach spaces.

2 Definitions and preliminary results

In the following, X is a Banach space with norm ‖·‖ . The dual norm ‖·‖X∗ of X∗ is

‖ϕ‖X∗ = sup {|ϕ(x)| : x ∈ X with ‖x‖X ≤ 1} = sup {|ϕ(x)| / ‖x‖X : 0 6= x ∈ X} . (2.1)

By L(X,Y ) we denote the space of continuous linear mappings from X into Y. The corresponding operator
norm is written as ‖·‖Y←X .

Definition 2.1 Let X be a Banach space. We say that P ∈ L(X,X) is a projection if P ◦ P = P. In this
situation we also say that P is a projection from X onto P (X) parallel to KerP.

From now on, we will denote P ◦ P = P 2. Observe that if P is a projection then IX − P is also a
projection. Moreover, IX − P is parallel to P (X) := ImP.

Observe that each projection gives rise to a pair of subspaces, namely U = ImP and V = KerP such
that X = U ⊕ V. It allows us to introduce the following two definitions.

Definition 2.2 We will say that a subspace U of a Banach space X is a complemented subspace if U is
closed and there exists V in X such that X = U ⊕ V and V is also a closed subspace of X. This subspace V
is called a (topological) complement of U and (U, V ) is a pair of complementary subspaces.

Corresponding to each pair (U, V ) of complementary subspaces, there is a projection P mapping X onto
U along V, defined as follows. Since for each x there exists a unique decomposition x = u+ v, where u ∈ U
and v ∈ V, we can define a linear map P (u+ v) := u, where ImP = U and KerP = V. Moreover, P 2 = P.

Definition 2.3 The Grassmann manifold of a Banach space X, denoted by G(X), is the set of all comple-
mented subspaces of X.
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U ∈ G(X) holds if and only if U is a closed subspace and there exists a closed subspace V in X such
that X = U ⊕ V. Then, by the proof of Proposition 4.2 of [5], the following result can be shown.

Proposition 2.4 Let X be a Banach space. The following conditions are equivalent:

(a) U ∈ G(X).

(b) There exists P ∈ L(X,X) such that P 2 = P and ImP = U.

(c) There exists Q ∈ L(X,X) such that Q2 = Q and KerQ = U.

Let V and U be closed subspaces of a Banach space X such that X = U⊕V. From now on, we will denote
by P

U⊕V the projection onto U along V. Then we have P
V⊕U = IX − PU⊕V . Let U,U ′ ∈ G(X). We say that

U and U ′ have a common complementary subspace in X, if X = U ⊕W = U ′ ⊕W for some W ∈ G(X).
The following result will be useful (see Lemma 2.1 in [3]).

Lemma 2.5 Let X be a Banach space and assume that W , U , and U ′ are in G(X). Then the following
statements are equivalent:

(a) X = U ⊕W = U ′ ⊕W, i.e., U and U ′ have a common complement in X.

(b) P
U⊕W |U ′ : U ′ → U has an inverse. Furthermore, if Q =

(
P
U⊕W |U′

)−1
exists, then Q is bounded and

Q = P
U′⊕W |U .

2.1 Banach manifolds

Definition 2.6 Let M be a set. An atlas of class Cp (p ≥ 0) on M is a family of charts with some indexing
set A, namely {(uα,Mα) : α ∈ A}, having the following properties:

AT1 {Mα}α∈A is a covering of M.

AT2 For each α ∈ A, (uα,Mα) stands for a bijection uα : Mα → Uα of Mα onto an open set Uα of a Banach
space Xα, and for any α and β the set uα(Mα ∩Mβ) is open in Xα.

AT3 Finally, if we let Mα ∩Mβ = Mαβ and uα(Mαβ) = Uαβ , the transition mapping uβ ◦u−1
α : Uαβ → Uβα

is a Cp-diffeomorphism.

Two atlases are said compatible if each chart of one atlas is compatible with the other atlas. One verifies
that the relation of compatibility between atlases is an equivalence relation.

Definition 2.7 An equivalence class of atlases of class Cp on M is said to define a structure of a Cp-Banach
manifold on M, and hence we say that M is a Banach manifold. If Xα is a Hilbert space for all α ∈ A, then
we say that M is a Hilbert manifold.

In condition AT2 we do not require that the Banach spaces are the same for all indices α, or even that
they are isomorphic. If Xα = X for all α, we have the following definition.

Definition 2.8 Let M be a set and X be a Banach space. We say that M is a Cp Banach manifold modelled
on X if there exists an atlas of class Cp over M with Xα = X for all α ∈ A.

Example 2.9 Every Banach space is a Banach manifold (for a Banach space Y , simply take (IY , Y ) as
atlas, where IY is the identity map on Y ). In particular, the set of all bounded linear maps L(X,X) of a
Banach space X is a Banach manifold.

If X is a Banach space, then the set of all bounded linear automorphisms of X will be denoted by

GL(X) := {A ∈ L(X,X) : A invertible } .

Example 2.10 If X is a Banach space, then GL(X) is a Banach manifold, because it is an open set in
L(X,X). Moreover, the map A 7→ A−1 is analytic (see 2.7 in [22]).
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Example 2.11 (Grassmann Banach manifold) Let X be a Banach space. Then, following [4], it is
possible to construct an atlas for G(X). To show that the atlas is an analytic Banach manifold, denote one
of the complements of U ∈ G(X) by W, i.e., X = U ⊕W . Then we define the Banach Grassmannian of U
relative to W by

G(W,X) := {V ∈ G(X) : X = V ⊕W} .

It is possible to introduce a bijection

ΨU⊕W : G(W,X) −→ L(U,W )

as the inverse of
Ψ−1
U⊕W : L(U,W ) −→ G(W,X),

defined by
Ψ−1
U⊕W (L) = G(L) := {u+ L(u) : u ∈ U} .

Observe that Ψ−1
U⊕W (0) = U and G(L) ⊕W = X for all L ∈ L(U,W ). It can be shown that the collection

{ΨU⊕W ,G(W,X)}U∈G(X) is an analytic atlas, and therefore, G(X) is an analytic Banach manifold. In

particular, for each U ∈ G(X) the set G(W,X)
ΨU⊕W∼= L(U,W ) is also a Banach manifold.

Let M be a Banach manifold of class Cp, p ≥ 1. Let m be a point of M. We consider triples (U,ϕ, v)
where (U,ϕ) is a chart at m and v is an element of the vector space in which ϕ(U) lies. We say that two of
such triples (U,ϕ, v) and (V, ψ,w) are equivalent if the derivative of ψϕ−1 at ϕ(m) maps v on w. Thanks to
the chain rule it is an equivalence relation. An equivalence class of such triples is called a tangent vector of
M at m.

Definition 2.12 The set of such tangent vectors is called tangent space of M at m and it is denoted by
Tm(M).

Each chart (U,ϕ) determines a bijection of Tm(M) on a Banach space, namely the equivalence class
of (U,ϕ, v) corresponds to the vector v. By means of such a bijection it is possible to equip Tm(M) with
the structure of a topological vector space given by the chart, and it is immediate that this structure is
independent of the chart selected.

Example 2.13 If X is a Banach space, then Tx(X) = X for all x ∈ X.

Example 2.14 Let X be a Banach space and take A ∈ GL(X). Then TA(GL(X)) = L(X,X).

Example 2.15 For U ∈ G(X) we have TU (G(X)) = L(U,W ).

Example 2.16 We point out that for a Hilbert space X with associated inner product 〈·, ·〉 and norm ‖ · ‖,
its unit sphere denoted by

SX := {x ∈ X : ‖x‖ = 1},

is a Hilbert manifold of codimension one. Moreover, for each x ∈ SX , its tangent space is

Tx(SX) = span {x}⊥ = {x′ ∈ X : 〈x, x′〉 = 0}.

3 Tensor spaces

Concerning the definition of the algebraic tensor space a
⊗d

j=1 Vj generated from vector spaces Vj (1 ≤ j ≤ d),
we refer to Greub [8]. As underlying field we choose R, but the results hold also for C. The suffix ‘a’ in

a

⊗d
j=1 Vj refers to the ‘algebraic’ nature. By definition, all elements of

V := a

d⊗
j=1

Vj
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are finite linear combinations of elementary tensors v =
⊗d

j=1 v
(j)
(
v(j) ∈ Vj

)
.

The following notations and definitions will be useful. We recall that L(V,W ) is the space of linear maps
from V into W, while V ′ = L(V,R) is the algebraic dual of V . For metric spaces, L(V,W ) denotes the
continuous linear maps, while V ∗ = L(V,R) is the topological dual of V .

Let D := {1, . . . , d} be the index set of the ‘spatial directions’. In the sequel, the index sets D\{j} will
appear. Here, we use the abbreviations

V[j] := a

⊗
k 6=j

Vk , where
⊗
k 6=j

means
⊗

k∈D\{j}

. (3.1)

Similarly, elementary tensors
⊗

k 6=j v
(k) are denoted by v[j].

For vector spaces Vj and Wj over R, let linear mappings Aj : Vj → Wj (1 ≤ j ≤ d) be given. Then the
definition of the elementary tensor

A =

d⊗
j=1

Aj : V = a

d⊗
j=1

Vj −→W = a

d⊗
j=1

Wj

is given by

A

 d⊗
j=1

v(j)

 :=

d⊗
j=1

(
Ajv

(j)
)
. (3.2)

Note that (3.2) extends uniquely to a linear mapping A : V→W.

Remark 3.1 (a) Let V := a

⊗d
j=1 Vj and W := a

⊗d
j=1Wj. Then the linear combinations of tensor

products of linear mappings A =
⊗d

j=1Aj defined by means of (3.2) form a subspace of L(V,W):

a

d⊗
j=1

L(Vj ,Wj) ⊂ L(V,W).

(b) The special case of Wj = R for all j (implying W = R) reads as a

⊗d
j=1 V

′
j ⊂ V′ .

(c) If dim(Vj) < ∞ and dim(Wj) < ∞ for all j, the inclusion ‘⊂’ in (a) and (b) can be replaced by ‘=’.
This can be easily verified by just checking the dimensions of spaces involved.

Often, mappings A =
⊗d

j=1Aj will appear, where most of the Aj are the identity (and therefore
Vj = Wj). If Ak ∈ L(Vk,Wk) for one k and Aj = id for j 6= k, we use the following notation:

id[k] ⊗Ak := id⊗ . . .⊗ id︸ ︷︷ ︸
k−1 factors

⊗Ak ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
d−k factors

∈ L(V,V[k] ⊗aWk), (3.3a)

provided that it is obvious which component k is meant. By the multiplication rule
(⊗d

j=1Aj

)
◦
(⊗d

j=1Bj

)
=⊗d

j=1 (Aj ◦Bj) and since id ◦Aj = Aj ◦ id, the following identity1 holds for j 6= k:

id⊗ . . .⊗ id⊗Aj ⊗ id⊗ . . .⊗ id⊗Ak ⊗ id⊗ . . .⊗ id
= (id[j] ⊗Aj) ◦ (id[k] ⊗Ak)
= (id[k] ⊗Ak) ◦ (id[j] ⊗Aj)

(3.3b)

(in the first line we assume j < k). Proceeding inductively with this argument over all indices, we obtain

A =

d⊗
j=1

Aj = (id[1] ⊗A1) ◦ · · · ◦ (id[d] ⊗Ad).

1Note that the meaning of id[j] and id[k] may differ: in the second line of (3.3b), (id[k] ⊗ Ak) ∈ L(V,V[k] ⊗a Wk)

and (id[j] ⊗ Aj) ∈ L
(
V[k] ⊗a Wk,V[j,k] ⊗a Wj ⊗a Wk

)
, whereas in the third one (id[j] ⊗ Aj) ∈ L(V,V[j] ⊗a Wj) and

(id[k] ⊗Ak) ∈ L
(
V[j] ⊗a Wj ,V[j,k] ⊗a Wj ⊗a Wk

)
. Here V[j,k] = a

⊗
l∈D\{j,k} Vl .
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If Wj = R, i.e., if Aj = ϕj ∈ V ′j is a linear form, then id[j] ⊗ ϕj ∈ L(V,V[j]) is used as symbol for
id⊗ . . .⊗ id⊗ ϕj ⊗ id⊗ . . .⊗ id defined by

(id[j] ⊗ ϕj)

(
d⊗
k=1

v(k)

)
= ϕj(v

(j)) ·
⊗
k 6=j

v(k). (3.3c)

Thus, if ϕ = ⊗dj=1ϕj ∈
⊗d

j=1 V
′
j , we can also write

ϕ = ⊗dj=1ϕj = (id[1] ⊗ ϕ1) ◦ · · · ◦ (id[d] ⊗ ϕd). (3.3d)

Consider again the splitting of V = a

⊗d
j=1 Vj into V = Vj ⊗a V[j] with V[j] := a

⊗
k 6=j Vk . For a linear

form ϕ[j] ∈ V′[j], the notation idj ⊗ϕ[j] ∈ L(V, Vj) is used for the mapping

(idj ⊗ϕ[j])

(
d⊗
k=1

v(k)

)
= ϕ[j]

(⊗
k 6=j

v(k)

)
· v(j). (3.3e)

If ϕ[j] =
⊗

k 6=j ϕk ∈ a

⊗
k 6=j V

′
k is an elementary tensor2, ϕ[j]

(⊗
k 6=j v

(k)
)

=
∏
k 6=j ϕk

(
v(k)

)
holds in (3.3e).

Finally, we can write (3.3d) as

ϕ = ⊗dj=1ϕj = ϕj ◦ (idj ⊗ϕ[j]) for 1 ≤ j ≤ d. (3.3f)

Definition 3.2 We say that V‖·‖ is a Banach tensor space if there exists an algebraic tensor space V and
a norm ‖·‖ on V such that V‖·‖ is the completion of V with respect to the norm ‖·‖, i.e.,

V‖·‖ := ‖·‖

d⊗
j=1

Vj = a

⊗d

j=1
Vj

‖·‖

.

If V‖·‖ is a Hilbert space, we say that V‖·‖ is a Hilbert tensor space.

Next, we give some examples of Banach and Hilbert tensor spaces.

Example 3.3 For Ij ⊂ R (1 ≤ j ≤ d) and 1 ≤ p <∞, the Sobolev space HN,p(Ij) consists of all univariate
functions f from Lp(Ij) with bounded norm3

‖f‖N,p;Ij :=

( N∑
n=0

∫
Ij

|∂nf |p dx

)1/p

, (3.4a)

whereas the space HN,p(I) of d-variate functions on I = I1 × I2 × . . .× Id ⊂ Rd is endowed with the norm

‖f‖N,p :=
( ∑

0≤|n|≤N

∫
I

|∂nf |p dx
)1/p

(3.4b)

with n ∈ Nd0 being a multi-index of length |n| :=
∑d
j=1 nj. For p > 1 it is well-known that HN,p(Ij) and

HN,p(I) are reflexive and separable Banach spaces. Moreover, for p = 2, the Sobolev spaces HN (Ij) :=
HN,2(Ij) and HN (I) := HN,2(I) are Hilbert spaces. As a first example,

HN,p(I) = ‖·‖N,p

d⊗
j=1

HN,p(Ij)

is a Banach tensor space. Examples of Hilbert tensor spaces are

L2(I) = ‖·‖0,2

d⊗
j=1

L2(Ij) and HN (I) = ‖·‖N,2

d⊗
j=1

HN (Ij) for N ∈ N.

2Recall that an elementary tensor is a tensor of the form v1 ⊗ · · · ⊗ vd.
3It suffices to have in (3.4a) the terms n = 0 and n = N. The derivatives are to be understood as weak derivatives.
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Let ‖·‖j , 1 ≤ j ≤ d, be the norms of the vector spaces Vj appearing in V = a

⊗d
j=1 Vj . By ‖·‖ we denote

the norm on the tensor space V. Note that ‖·‖ is not determined by ‖·‖j , but there are relations which are
‘reasonable’.

Any norm ‖·‖ on a

⊗d
j=1 Vj satisfying∥∥∥⊗d

j=1
v(j)
∥∥∥ =

∏d

j=1
‖v(j)‖j for all v(j) ∈ Vj (1 ≤ j ≤ d) (3.5)

is called a crossnorm. As usual, the dual norm to ‖·‖ is denoted by ‖·‖∗. If ‖·‖ is a crossnorm and also ‖·‖∗

is a crossnorm on a

⊗d
j=1 V

∗
j , i.e.,∥∥∥⊗d

j=1
ϕ(j)

∥∥∥∗ =
∏d

j=1
‖ϕ(j)‖∗j for all ϕ(j) ∈ V ∗j (1 ≤ j ≤ d) , (3.6)

‖·‖ is called a reasonable crossnorm.

Remark 3.4 Eq. (3.5) implies the inequality ‖
⊗d

j=1 vj‖ .
∏d
j=1 ‖vj‖j which is equivalent to the continuity

of the multilinear tensor product mapping4

⊗
:

d×
j=1

(
Vj , ‖·‖j

)
−→

(
a

d⊗
j=1

Vj , ‖·‖
)
, (3.7)

defined by ⊗ ((v1, . . . , vd)) = ⊗dj=1vj, the product space being equipped with the product topology induced by
the maximum norm ‖(v1, . . . , vd)‖ = max1≤j≤d ‖vj‖j.

Proposition 3.5 Assume that the tensor product map (3.7) is continuous. Then it is also Fréchet differ-
entiable and its differential is given by

D
(⊗

(v1, . . . , vd)
)

(w1, . . . , wd) =

d∑
j=1

v1 ⊗ . . .⊗ vj−1 ⊗ wj ⊗ vj+1 ⊗ · · · vd.

Proof. Clearly, D
⊗

(v1, . . . , vd) is a multilinear map. If we assume that the tensor product map (3.7) is

continuous, that is ‖
⊗d

j=1 uj‖ ≤ C
∏d
j=1 ‖uj‖j for some C > 0, then

‖D
⊗

(v1, . . . , vd)(w1, . . . , wd)‖ ≤ C
d∑
j=1

‖v1‖1 · · · ‖vj−1‖j−1‖wj‖j‖vj+1‖j+1 · · · ‖vd‖d

≤ C

 d∑
j=1

∏d
k=1 ‖vk‖k
‖vj‖j

 max
1≤k≤d

‖wk‖k

shows that D
⊗

(v1, . . . , vd) is also continuous. Finally,

‖ ⊗ (v1 + h1, · · · , vd + hd)−⊗(v1, · · · , vd)−D ⊗ (v1, · · · , vd)(h1, · · · , hd)‖

=

d∑
i1,i2=1
i1<i2

‖Ti1,i2(hi1 , hi2) +

d∑
i1,i2,i3=1
i1<i2<i3

Ti1,i2,i3(hi1 , hi2 , hi3) + . . .+ T1,...,d(h1, . . . , hd)‖

≤ ‖
d∑

i1,i2=1
i1<i2

Ti1,i2(hi1 , hi2)‖+

d∑
i1,i2,i3=1
i1<i2<i3

‖Ti1,i2,i3(hi1 , hi2 , hi3)‖+ . . .+ ‖T1,...,d(h1, . . . , hd)‖

4Recall that a multilinear map T from×d

j=1(Vj , ‖ · ‖j) equipped with the product topology to a normed space (W, ‖ · ‖) is
continuous if and only if ‖T‖ <∞, with

‖T‖ := sup
(v1,...,vd)

‖(v1,...,vd)‖≤1

‖T (v1, . . . , vd)‖ = sup
(v1,...,vd)

‖v1‖1≤1,...,‖vd‖d≤1

‖T (v1, . . . , vd)‖ = sup
(v1,...,vd)

‖T (v1, . . . , vd)‖
‖v1‖1 . . . ‖vd‖d

.
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where the Ti1,...,ik are multilinear maps defined by Ti1,...,ik(hi1 , . . . , hik) = ⊗dj=1zj with zj = hj if j ∈
{i1, . . . , ik}, and zj = vj otherwise. Since these multilinear maps have at least two arguments, we have

‖Ti1,...,ik(hi1 , . . . , hik)‖ ≤ C
∏

j∈{i1,...,ik}

‖hj‖j
∏

j∈{1,...,d}\{i1,...,ik}

‖vj‖j

≤ C max
1≤j≤d

‖hj‖j
∏

j∈{i2,...,ik}

‖hj‖j
∏

j∈{1,...,d}\{i1,...,ik}

‖vj‖j

= C‖(h1, . . . , hd)‖
∏

j∈{i2,...,ik}

‖hj‖j
∏

j∈{1,...,d}\{i1,...,ik}

‖vj‖j

which proves that
‖Ti1,...,ik (hi1 ,...,hik )‖

‖(h1,...,hd)‖ tends to zero as (h1, . . . , hd) → 0, and therefore
⊗

is Fréchet differ-

entiable and the proposition follows.

Grothendieck [9] named the following norm ‖·‖∨ the injective norm.

Definition 3.6 Let Vi be a Banach space with norm ‖·‖i for 1 ≤ i ≤ d. Then for v ∈ V = a

⊗d
j=1 Vj define

‖·‖∨ by

‖v‖∨ := sup

{
|(ϕ1 ⊗ ϕ2 ⊗ . . .⊗ ϕd) (v)|∏d

j=1 ‖ϕj‖∗j
: 0 6= ϕj ∈ V ∗j , 1 ≤ j ≤ d

}
. (3.8)

It is well-known that the injective norm is a reasonable crossnorm (see Lemma 1.6 in [17]). Further
properties are given by the next proposition (see also 4.2.4 in [12]).

Proposition 3.7 The following statements hold.

(a) The injective norm is the weakest reasonable crossnorm on V, i.e., if ‖·‖ is a reasonable crossnorm on
V, then

‖·‖ & ‖·‖∨ (3.9)

(b) For any norm ‖·‖ on V satisfying ‖·‖∨ . ‖·‖ , the map (3.7) is continuous, and hence Fréchet differ-
entiable.

Below, we will need a further assumption on the norm ‖·‖ . A norm ‖·‖ is a uniform crossnorm if it is a
crossnorm (cf. (3.5)) and satisfies∥∥∥∥∥

( d⊗
j=1

Aj

)
(v)

∥∥∥∥∥ ≤
( d∏
j=1

‖Aj‖Vj←Vj
)
‖v‖ (3.10)

for all Aj ∈ L(Vj , Vj) (1 ≤ j ≤ d) and all v ∈ a

⊗d
j=1 Vj . The uniform crossnorm property implies that ‖·‖

is a reasonable crossnorm (cf. [20]). Hence, condition (3.9) is ensured (cf. Proposition 3.7a).

Definition 3.8 Let X be a Banach space and ‖ · ‖ be a norm defined over a

⊗d
j=1 Vj . For each A ∈

L
(
a

⊗d
j=1 Vj , X

)
we will denote by A ∈ L

(
‖·‖
⊗d

j=1 Vj , X
)

its unique extension. Recall that A|V = A.

Observe that if ‖ · ‖ is a uniform crossnorm then for all Aj ∈ L(Vj , Vj) (1 ≤ j ≤ d) the map
⊗d

j=1Aj
belongs to L(V‖·‖,V‖·‖).

4 The manifold of multilinear full rank tensors

Now, we assume that dimVk <∞ for 1 ≤ k ≤ d. Before introducing the set of multilinear full rank tensors,
we recall the definition of the ‘matricisation’ (or ‘unfolding’) of a tensor in a finite-dimensional setting.
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Definition 4.1 For j ∈ D = {1, . . . , d}, the map Mj is defined as the isomorphism

Mj : a

⊗d
s=1 Vs → Vj ⊗a V[j],⊗d

s=1 v
(s) 7→ v(j) ⊗ v[j] with v[j] :=

⊗
k 6=j v

(k).

In the finite-dimensional case of Vk = Rnk , an element of the tensor space Vj⊗aV[j] of order 2 may be con-
sidered as a matrix from Rnj×n[j] , where n[j] =

∏
k 6=j nk. Then, Mj maps a tensor entry v[i1, . . . , ij , . . . , id]

into the matrix entry (Mj(v)) [ij , (i1, . . . , ij−1, ij+1, . . . , id)]. As long as we do not consider matrix proper-
ties which depend on the ordering of the index set, we need not introduce an ordering of the (d− 1)-tuple
(i1, . . . , ij−1, ij+1, . . . , id).

Next, we restrict the considerations to finite-dimensional Vk. Since tensor products of two vectors can
be interpreted as matrices, the mappingMj is named ‘matricisation’ (or ‘unfolding’). The interpretation of
tensors v as matrices enables us to transfer the matrix terminology to v. In particular, we may define the
rank of Mj(v) as a property of v.

Definition 4.2 Let dim(Vk) <∞ (k ∈ D). For all j ∈ D we define

rankj(v) := rank(Mj(v)) . (4.1)

Assume dim(Vk) <∞ (k ∈ D). Since Mj(v) ∈ Rdim(Vj)×
∏
k 6=j dim(Vk), if5 rank(Mj(v)) = dim(Vj) then

det
(
Mj(v)Mj(v)T

)
6= 0.

It allows to introduce the following definition.

Definition 4.3 Let v ∈ Rn1×···×nd . We say that v is a multilinear full rank tensor if and only if

d∏
j=1

det
(
Mj(v)Mj(v)T

)
6= 0. (4.2)

We denote by Rn1×···×nd
∗ the set of multilinear full rank tensors of Rn1×···×nd . Since the determinant

is a continuous function, Rn1×···×nd
∗ is an open set in Rn1×···×nd , and hence a finite-dimensional manifold.

Moreover, the tangent space Tv(Rn1×···×nd
∗ ) = Rn1×···×nd for all v ∈ Rn1×···×nd

∗ (cf. Definition 2.12).

5 Minimal subspaces and the representation of tensors in the tree
based format

We introduce the abbreviate TBF for ‘tree based format’. For instance, a TBF tensor is a tensor represented
in the tree based format, etc. The tensor based rank will be abbreviated by TB rank. The underlying tree
will be defined in Sect. 5.2.

5.1 Minimal subspaces

Let Vj be a vector space for j ∈ D, where D is a finite index set, and consider a tensor space VD :=

a

⊗
j∈D Vj . In order to avoid trivial cases, we assume #D ≥ 2.

Definition 5.1 For a tensor v ∈ a

⊗d
j=1 Vj , the minimal subspaces are denoted by Umin

j (v) (j = 1, . . . , d)

and defined by the property that v ∈ a

⊗d
j=1 Uj implies Umin

j (v) ⊂ Uj (j = 1, . . . , d), while v ∈ a

⊗d
j=1 U

min
j (v) .

A useful result is the following.

5rank(Mj(v)) = dim(Vj) implies that dim(Vj) ≤
∏

k 6=j dim(Vk) and that Mj(v) has full rank. The latter estimate is a
very natural assumption.
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Lemma 5.2 Let u,v ∈ a

⊗d
j=1 Vj be such that dimUmin

j (v) = dimUmin
j (u) for 1 ≤ j ≤ d. Then

u ∈ a

d⊗
j=1

Umin
j (v)

if and only if Umin
j (u) = Umin

j (v) for j = 1, 2, . . . , d.

Proof. Clearly, if Umin
j (u) = Umin

j (v) for j = 1, 2, . . . , d, then u ∈ a

⊗d
j=1 U

min
j (v) holds. On the other hand

assume that u ∈ a

⊗d
j=1 U

min
j (v) . We have

Umin
j (u) ⊂ Umin

j (v) for 1 ≤ j ≤ d.

Since dimUmin
j (v) = dimUmin

j (u) for 1 ≤ j ≤ d, we obtain the desired equality and the lemma follows.

The next characterisation of Umin
j (v) is due to [6]. To this end, we introduce the following two subspaces:

U Ij (v) :=
{

(idj ⊗ϕ[j])(v) : ϕ[j] ∈ a

⊗
k 6=j

V ′k

}
, (5.1a)

U IIj (v) :=

{
(idj ⊗ϕ[j])(v) : ϕ[j] ∈

(
a

⊗
k 6=j

Vk

)′}
. (5.1b)

In the case of normed spaces Vk, we may consider the subspace

U IIIj (v) :=
{

(idj ⊗ϕ[j])(v) : ϕ[j] ∈ a

⊗
k 6=j

V ∗k

}
. (5.1c)

Finally, if V[j] = a

⊗
k 6=j Vk is a normed space, we can define

U IVj (v) :=
{

(idj ⊗ϕ[j])(v) : ϕ[j] ∈ V∗[j]

}
. (5.1d)

Note that, in general, the four spaces a

⊗
k 6=j V

′
k , (a

⊗
k 6=j Vk)′, a

⊗
k 6=j V

∗
k and V∗[j] may differ.

Theorem 5.3 For any v ∈ V = a

⊗d
j=1 Vj , the following statements hold:

(a) There exist minimal subspaces Umin
j (v) (1 ≤ j ≤ d) , whose algebraic characterisation is given by

Umin
j (v) = U Ij (v) = U IIj (v).

(b) Assume that Vj and V[j] = a

⊗
k 6=j Vk are normed spaces for 1 ≤ j ≤ d. Then

Umin
j (v) = U Ij (v) = U IIj (v) = U IIIj (v) = U IVj (v).

(c) If dimVj <∞ for j ∈ D, then
dimUmin

j (v) = rankj(v).

The minimal subspaces are useful to introduce the following sets of tensor representations based on
subspaces. Fix r = (r1, . . . , rd) ∈ Nd. Then we define the set of Tucker tensors with bounded rank r in

V = a

⊗d
j=1 Vj by

Tr(V) :=
{
v ∈ V : dimUmin

j (v) ≤ rj , 1 ≤ j ≤ d
}
,

and the set of Tucker tensors with fixed rank r in V = a

⊗d
j=1 Vj by

Mr(V) :=
{
v ∈ V : dimUmin

j (v) = rj , 1 ≤ j ≤ d
}
.
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Then Mr(V) ⊂ Tr(V) ⊂ V holds.

We have introduced the minimal subspace Umin
j (v) ⊂ Vj for a singleton {j} ⊂ D := {1, 2, . . . , d}. Instead

we may consider general disjoint and non-empty subsets αi ⊂ D. For instance, let v ∈ a

⊗
j∈D Vj =

Vα1 ⊗Vα2 ⊗Vα3 , where α1 = {1, 2}, α2 = {3, 4}, and α3 = {5, 6, 7}. Then we can conclude that there are

minimal subspaces Umin
αν (v) for ν = 1, 2, 3, such that v ∈ a

⊗3
ν=1 Umin

αν (v) . The relation between Umin
j (v)

and Umin
αν (v) is as follows.

Proposition 5.4 Let v ∈ VD = a

⊗
j∈D Vj and ∅ 6= α ⊂ D. Then the minimal subspaces Umin

α (v) and

Umin
j (v) for j ∈ α are related by

Umin
α (v) ⊂ a

⊗
j∈α

Umin
j (v) . (5.2)

An obvious generalisation of the previous result is given below.

Corollary 5.5 Let v ∈ VD = a

⊗
j∈D Vj . Assume that ∅ 6= αi ⊂ D are pairwise disjoint for i = 1, 2, . . . ,m.

The minimal subspace Umin
α (v) for α :=

⋃m
i=1 αi satisfies

Umin
α (v) ⊂ a

m⊗
i=1

Umin
αi (v) . (5.3)

The algebraic characterisation of Umin
α (v) is analogous to that given in Theorem 5.3. Formulae (5.1a,b)

become

Umin
α (v) =

{
(idα ⊗ϕαc) (v) : ϕαc ∈ a

⊗
j∈αc

V ′j

}
(5.4)

=
{

(idα ⊗ϕαc) (v) : ϕαc ∈
(
a

⊗
j∈αc

Vj
)′}

,

where (idα ⊗ϕαc) (⊗dj=1v
(j)) =

(
ϕαc(⊗j∈αcv(j))

)
⊗k∈α v(k). The analogues of (5.1c,d) apply as soon as

norms are defined on Vj and a

⊗
j∈αc Vj .

From now on, given ∅ 6= α ⊂ D, we will denote Vα := a

⊗
j∈α Vj , rα := dimUmin

α (v) and Umin
D (v) :=

span {v}.

Example 5.6 Let us consider D = {1, 2, 3, 4, 5, 6}, then

VD = a

6⊗
j=1

Vj =


a

3⊗
j=1

Vj

⊗a

a

5⊗
j=4

Vj

⊗a V6 = V123 ⊗a V45 ⊗a V6.

It is well-known (see [6]) that v ∈ a

⊗6
j=1 U

min
j (v) and v ∈ Umin

123 (v)⊗a Umin
45 (v)⊗a Umin

6 (v). From Propo-
sition 5.4 we have

Umin
D (v) ⊂ Umin

123 (v)⊗a Umin
45 (v)⊗a Umin

6 (v) ⊂ a

6⊗
j=1

Umin
j (v) . (5.5)

Moreover, we can write

v =

r123∑
i123=1

r45∑
i45=1

r6∑
i6=1

C
(D)
i123i45i6

u
(123)
i123

⊗ u
(45)
i45
⊗ u(6)

i6
, C(D) ∈ Rr123×r45×r6∗

where

ui123 =

r1∑
i1=1

r2∑
i2=1

r3∑
i3=1

C
(123)
i123,i1i2i3

u
(1)
i1
⊗ u(2)

i2
⊗ u(3)

i3
, C(123) ∈ Rr123×r1r2r3∗
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{1, 2, 3, 4, 5, 6}

{6}{5}{4}{3}{2}{1}

Figure 5.1: A dimension partition tree related to Umin
D (v) ⊂ a

⊗
j∈D U

min
j (v) .

and

ui45 =

r4∑
i4=1

r5∑
i5=1

C
(45)
i45,i4i5

u
(4)
i4
⊗ u(5)

i5
, C(45) ∈ Rr45×r4r5∗ .

Finally

v =

r1∑
i1=1

· · ·
r6∑
i6=1

(
r123∑
i123=1

r45∑
i45=1

C
(D)
i123i45i6

C
(123)
i123,i1i2i3

C
(45)
i45,i4i5

)
︸ ︷︷ ︸

vi1,...,i6

6⊗
k=1

u
(k)
ik
,

where u
(k)
ik
∈ Umin

k (v) for 1 ≤ k ≤ 6.

5.2 Dimension partition tree and TB rank

Since (5.5) can be represented by means of a tree (see Figure 5.2), it motivates the following definition.

Definition 5.7 The tree TD is called a dimension partition tree of D if

(a) all vertices α ∈ TD are non–empty subsets of D,

(b) D is the root of TD,

(c) every vertex α ∈ TD with #α ≥ 2 has at least two sons. Moreover, if S(α) ⊂ 2D denotes the set of
sons of α then α = ∪β∈S(α)β where β ∩ β′ = ∅ for all β, β′ ∈ S(α), β 6= β′.

If S(α) = ∅, α is called a leaf. The set of leaves is denoted by L(TD). An easy consequence of Definition 5.7
is that the set of leaves L(TD) coincides with the singletons of D, i.e., L(TD) = {{j} : j ∈ D}.

Example 5.8 Consider D = {1, 2, 3, 4, 5, 6} and recall that Umin
D (v) ⊂ a

⊗
j∈D U

min
j (v) . Take

TD = {D, {1}, {2}, {3}, {4}, {5}, {6}} and S(D) = {{1}, {2}, {3}, {4}, {5}, {6}}

(see Figure 5.1). Then S(D) = L(TD).

Example 5.9 In Figure 5.2 we have a tree which corresponds to (5.5). Here D = {1, 2, 3, 4, 5, 6} and

TD = {D, {1, 2, 3}, {4, 5}, {1}, {2}, {3}, {4}, {5}, {6}},

S(D) = {{1, 2, 3}, {4, 5}, {6}}, S({4, 5}) = {{4}, {5}}, S({1, 2, 3}) = {{1}, {2}, {3}}.
Moreover

L(TD) = {{1}, {2}, {3}, {4}, {5}, {6}}.

Observe that for each v ∈ VD we have that (dim Umin
α (v))α∈2D\{∅} is in N2#D−1,

Definition 5.10 Let TD be a dimension partition tree of an index set D. Then for each v ∈ VD =

a

⊗
j∈D Vj we define its tensor based rank (TB rank) by (dim Umin

α (v))α∈TD ∈ N#TD .

In order to characterise the tensors v ∈ VD satisfying (dim Umin
α (v))α∈TD = r, for a fixed r := (rα)α∈TD ∈

N#TD , we introduce the following definition.

Definition 5.11 We will say that r := (rα)α∈TD ∈ N#TD is an admissible tuple for TD, if there exists
v ∈ VD \ {0} such that dimUmin

α (v) = rα for all α ∈ TD \ {D}.

Necessary conditions for r to be admissible are

rα ≤ dimVj for α = {j} ∈ L(TD),
rD = 1 for α = D.

(5.6)
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{1, 2, 3, 4, 5, 6}

{6}{4, 5}

{5}{4}

{1, 2, 3}

{3}{2}{1}

Figure 5.2: A dimension partition tree related with (5.5).

5.3 The representations of tensors of fixed TB rank

Let us consider for a given dimension partition tree TD, a fixed admissible tuple r ∈ N#TD . Take v ∈ VD

such that dimUmin
α (v) = rα and consider a basis {u(α)

iα
: 1 ≤ iα ≤ rα} of Umin

α (v) for each α ∈ TD \ {D}.

Since v ∈ a

⊗
α∈S(D) U

min
α (v) , there exists C(D) ∈ R×α∈S(D) rα

∗ such that

v =
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα
. (5.7)

If S(D) = L(TD), then (5.7) gives us the classical Tucker representation. Assume S(D) 6= L(TD). Now,
for each µ ∈ TD \ {D} such that S(µ) 6= ∅ we have Umin

µ (v) ⊂ a

⊗
β∈S(µ) U

min
β (v) and then, there exists

C(µ) ∈ Rrµ×(×β∈S(α) rβ) such that

u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(α)

C
(µ)
iµ,(iβ)β∈S(µ)

⊗
β∈S(µ)

u
(β)
iβ
. (5.8)

for 1 ≤ iµ ≤ rµ. Since {u(µ)
iµ

: 1 ≤ iµ ≤ rµ} is a basis, we can identify C(µ) with a matrix, also denoted by C(µ),

in the non-compact Stiefel manifold R
rµ×(

∏
β∈S(µ) rβ)

∗ , which is the set of matrices in Rrµ×(
∏
β∈S(α) rβ) whose

rows are linearly independent (see 3.1.5 in [1]). From (5.7) and (5.8) we obtain the Tucker representation of
v, when S(D) 6= L(TD), as

v =
∑

1≤ik≤rk
k∈L(TD)


∑

1≤iα≤rα
α∈S(D)
α/∈L(TD)

C
(D)
(iα)α∈S(D)

∏
µ∈TD\{D}
S(µ) 6=∅

C
(µ)
iµ,(iβ)β∈S(µ)


⊗

k∈L(TD)

u
(k)
ik
. (5.9)

The procedure, given a basis of Umin
α (v) for α ∈ TD \ {D}, used to obtain (5.9) is completely characterised

by a finite tuple of tensors

C := (C(α))α∈TD\L(TD) ∈ ×
α∈TD\L(TD)

Rrα×(×β∈S(α) rβ),

where C(D) ∈ R×α∈S(D) rα
∗ and C(µ) ∈ R

rµ×(
∏
β∈S(µ) rβ)

∗ , for each µ ∈ TD \ {D} such that S(µ) 6= ∅. From
now on, to simplify the notation, we introduce for an admissible r ∈ NTD the product vector space

Rr := ×
α∈TD\L(TD)

Rrα×(×β∈S(α) rβ)

and its open subset, and hence a manifold,

Rr
∗ :=

{
C ∈ Rr : C(D) ∈ R×α∈S(D) rα

∗ and C(µ) ∈ R
rµ×(

∏
β∈S(µ) rβ)

∗
for each µ ∈ TD \ {D} such that S(µ) 6= ∅.

}
.
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Definition 5.12 Let TD be a given dimension partition tree and fix some tuple r ∈ NTD for TD. The set of
TBF tensors of bounded TB rank r is defined by

BT r(VD) :=
{
v ∈ VD : dim Umin

α (v) ≤ rα for all α ∈ TD
}
, (5.10)

and the set of TBF tensors of fixed TB rank r is defined by

FT r(VD) :=
{
v ∈ BT r(VD) : dim Umin

α (v) = rα for all α ∈ TD
}
. (5.11)

Note that FT r(VD) = ∅ for an inadmissible tuple r. For r, s ∈ NTD we write s ≤ r if and only if sα ≤ rα
for all α ∈ TD. Then we have

BT r(VD) =
⋃
s≤r

FT s(VD).

Next we give some useful examples.

Example 5.13 (Tucker format) Consider the partition tree over D := {1, . . . , d}, where S(D) = L(TD) =
{{j} : 1 ≤ j ≤ d}. Let (rD, r1, . . . , rd) be admissible, then rD = 1 and rj ≤ dimVj for 1 ≤ j ≤ d. Thus we
can write

BT (1,r1,...,rd)(VD) = T(r1,...,rd)(VD)

and
FT (1,r1,...,rd)(VD) =M(r1,...,rd)(VD).

Example 5.14 (Tensor Train format) Consider a binary partition tree over D := {1, . . . , d} given by

TD = {D, {{j} : 1 ≤ j ≤ d}, {{j + 1, . . . , d} : 1 ≤ j ≤ d− 2}}.

In particular, S({j, . . . , d}) = {{j}, {j + 1, . . . , d}} for 1 ≤ j ≤ d− 1. This tensor based format is related to
the following chain of inclusions:

Umin
D (v) ⊂ Umin

1 (v)⊗a Umin
2···d(v) ⊂ Umin

1 (v)⊗a Umin
2 (v)⊗a Umin

3···d(v) ⊂ · · · ⊂ a

⊗
j∈D

Umin
j (v) .

Finally, from Theorem 6.24 of [12], the following result can be shown.

Theorem 5.15 Let V‖·‖D = ‖·‖D
⊗

j∈D Vj , be a tensor Banach space with a norm satisfying ‖ · ‖D & ‖·‖∨
and TD be a dimension partition tree of the index set D. Then for each admissible tuple r ∈ NTD for TD the
following statements hold.

(a) The set BT r(VD) is weakly closed in V‖·‖D .

(b) Assume that V‖·‖D is reflexive. Then for each u ∈ V‖·‖D there exists v ∈ BT r(VD) such that

‖u− v‖ = min
w∈BT r(VD)

‖u−w‖.

6 The manifold of TBF tensors of fixed TB rank

Now, assume that ‖ · ‖α is a norm on Vα = a

⊗
j∈α Vj , for each α ∈ TD \ {D}, and Vα‖·‖α

= ‖·‖α
⊗

j∈α Vj
is its corresponding tensor Banach space. Let

G(TD) := ×
α∈TD\{D}

G(Vα‖·‖α
) = {U := {Uα}α∈TD\{D} : Uα ∈ G(V‖·‖α)}

be the product Banach manifold. Fix v ∈ FT r(VD) and consider a basis {u(α)
iα

: 1 ≤ iα ≤ rα} of Umin
α (v)

for each α ∈ TD \ {D} such that v can be represented by means (5.7) and (5.8). Thus v is completely
characterised by C ∈ Rr

∗ and ({u
i
(α)
α

: 1 ≤ iα ≤ rα})α∈TD\{D}. Assume a decomposition into a direct sum

Vα‖·‖α
= Umin

α (v)⊕Wmin
α (v)
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for α ∈ TD \ {D}. From Example 2.11 we recall for each α ∈ TD \ {D} the existence of the set

G(Wmin
α (v),Vα‖·‖α

) = {Uα ∈ G(Vα‖·‖α
) : Uα ⊕Wmin

α (v) = Vα‖·‖α
}

and the bijective map ΨUmin
α (v)⊕Wmin

α (v) : G(Wmin
α (v),Vα‖·‖α

) −→ L(Umin
α (v),Wmin

α (v)). Clearly, the map

Ψv : ×
α∈TD\{D}

G(Wmin
α (v),Vα‖·‖α

)→ ×
α∈TD\{D}

L(Umin
α (v),Wmin

α (v)),

defined as Ψv :=×α∈TD\{D}ΨUmin
α (v)⊕Wmin

α (v) is also bijective. Furthermore, it is a local chart for U(v) :=

{Umin
α (v)}α∈TD\{D} in G(TD) such that Ψv(U(v)) = 0 := (0)α∈TD\{D}. To simplify the notation, for each

v ∈ FT r(VD) we will use

LTD (v) := ×
α∈TD\{D}

L
(
Umin
α (v),Wmin

α (v)
)

= {L := {Lα}α∈TD\{D} : Lα ∈ L
(
Umin
α (v),Wmin

α (v)
)
},

which is a closed subspace of the Banach space

LTD := ×
α∈TD\{D}

L
(
Vα‖·‖α

,Vα‖·‖α

)
,

and
G(U(v)) := ×

α∈TD\{D}
G(Wmin

α (v),Vα‖·‖α
),

which is a local neighbourhood of U(v) in the manifold G(TD). Moreover, U = Ψ−1
v (L), with Uα = G(Lα) ={

uα + Lα(uα) : uα ∈ Umin
α (v)

}
, for each α ∈ TD \ {D}. A useful result is the following.

Lemma 6.1 For each α ∈ TD\{D}, the set L(Umin
α (v),Wmin

α (v)) is a complemented subspace of L(Vα‖·‖α
,Vα‖·‖α

),
and hence for each v ∈ VD, the set LTD (v) is a complemented subspace of LTD .

Proof. Observe that the map

Πα : L
(
Vα‖·‖α

,Vα‖·‖α

)
→ L

(
Vα‖·‖α

,Vα‖·‖α

)
defined by

Πα(Lα) = PWmin
α (v)⊕Umin

α (v)LαPUmin
α (v)⊕Wmin

α (v)

is a projection onto L(Umin
α (v),Wmin

α (v)).

Now, we introduce the map

ΛTD : FT r(VD) −→ G(TD), w 7→ U(w) := (Umin
α (w))α∈TD\{D},

and observe that for each w ∈ FT r(VD) we have

Λ−1
TD

(ΛTD (w)) =
{
u ∈ FT r(VD) : Umin

α (u) = Umin
α (w) for all α ∈ TD \ {D}

}
.

We will define the local neighbourhood of v, denoted by U(v), in FT r(VD) as

U(v) := Λ−1
TD

(G(U(v))) ⊂ FT r(VD).

Observe that for each w ∈ U(v) we have

Vα‖·‖α
= Umin

α (w)⊕Wmin
α (v),

where Umin
α (w) ∈ G(Wmin

α (v),V‖·‖α), for each α ∈ TD \ {D}. Since

G(Wmin
α (v),Vα‖·‖α

)
ΨUmin

α (v)⊕Wmin
α (v)∼= L(Umin

α (v),Wmin
α (v)),

15



there exists a unique Lα ∈ L(Umin
α (v),Wmin

α (v)) such that

ΨUmin
α (v)⊕Wmin

α (v)(U
min
α (w)) = Lα

for each α ∈ TD \ {D}. Moreover, we claim that

Umin
α (w) = span{Lα(u

(α)
iα

) + u
(α)
iα

: 1 ≤ iα ≤ rα}

holds for all α ∈ TD \ {D}. To prove the claim, we only need to show that

{Lα(u
(α)
iα

) + u
(α)
iα

: 1 ≤ iα ≤ rα}

are linearly independent in Umin
α (w). If the last statement is not true, we may assume without loss of

generality that

Lα(u
(α)
1 ) + u

(α)
1 =

rα∑
k=2

λk(Lα(u
(α)
k ) + u

(α)
k ),

i.e.,

Lα(u
(α)
1 )−

rα∑
k=2

λkLα(u
(α)
k ) =

rα∑
k=2

λku
(α)
k − u

(α)
1 .

The left-hand side is in Wmin
α (v) and the right-hand side is in Umin

α (w). Since Wmin
α (v) ∩ Umin

α (w) = {0}
we then have a contradiction and the claim follows.

For each u ∈ Λ−1
TD

(ΛTD (w)) we fix the basis {w(α)
iα

:= u
(α)
iα

+Lα(u
(α)
iα

) : 1 ≤ iα ≤ rα} of Umin
α (w) for each

α ∈ TD \ {D}. Then we define ξw : Λ−1
TD

(ΛTD (w)) −→ Rr
∗ by

ξw(u) := C(u) = (C(α)(u))α∈TD\L(TD),

where
u =

∑
1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

(u)
⊗

α∈S(D)

(Lα(u
(α)
iα

) + u
(α)
iα

)

and, if S(D) 6= L(T ), for each µ ∈ TD \ {D} such that S(µ) 6= ∅ we have

Lµ(u
(µ)
iµ

) + u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

(u)
⊗

β∈S(µ)

(Lβ(u
(β)
iβ

) + u
(β)
iβ

),

for 1 ≤ iµ ≤ rµ. Clearly, ξw is one-to-one. On the other hand, given B ∈ Rr
∗, we can construct u ∈

Λ−1
TD

(ΛTD (w)) satisfying B = C(u). Thus we can conclude that ξw is a bijection which is independent of w.
It allows us to define a local chart Θv : U(v) −→ Rr

∗ × LTD (v) by

Θv(w) := (ξw(w),Ψv ◦ ΛTD (w)) = (C(w),Ψv(U(w))) .

More precisely, Θv(w) = (C(w),L) if and only if

w =
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

(w)
⊗

α∈S(D)

(Lα(u
(α)
iα

) + u
(α)
iα

), (6.1)

where, if S(D) 6= L(TD), for each µ ∈ TD \ {D} such that S(µ) 6= ∅ we have

Lµ(u
(µ)
iµ

) + u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

(w)
⊗

β∈S(µ)

(Lβ(u
(β)
iβ

) + u
(β)
iβ

) (6.2)

16



for 1 ≤ iµ ≤ rµ. Proceeding iteratively along the tree, we obtain, for S(D) 6= L(TD), a Tucker format
representation of w given by

w =
∑

1≤ik≤rk
k∈L(TD)


∑

1≤iα≤rα
α∈S(D)
α/∈L(TD)

C
(D)
(iα)α∈S(D)

(w)
∏

µ∈TD\{D}
S(µ)6=∅

C
(µ)
iµ,(iβ)β∈S(µ)

(w)


⊗

k∈L(TD)

(Lk(u
(k)
ik

) + u
(k)
ik

).

The next result shows that the collection {Θv,U(v)}v∈FT r(VD) is an atlas for FT r(VD).

Theorem 6.2 Assume that Vα‖·‖α
is a Banach space with norm ‖·‖α for α ∈ TD \{D}. Then the collection

{Θv,U(v)}v∈FT r(VD) is an analytic atlas for FT r(VD). Furthermore, the set FT r(VD) of TBF tensors
with fixed TB rank is an analytical Banach manifold.

Proof. Clearly, {U(v)}v∈FT r(VD) is a covering of FT r(V) and AT1 is true. Take (C,L) ∈ Rr
∗ ×LTD (v). By

using (6.1)-(6.2), we can construct w ∈ U(v) such that Θv(w) = (C,L) , and in consequence Θv is surjective.
Now, consider that Θv(u) = Θv(w). Since Umin

α (u) = Umin
α (w) for all α ∈ TD \ {D} and C(v) = C(w),

also from (6.1)-(6.2) we can conclude that w = u. In consequence AT2 holds. Finally for v,u ∈ FT r(VD)
consider U(v,u) := U(v) ∩ U(u). Observe that w ∈ U(v,u) if and only if

Umin
α (w) ∈ G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α
) for α ∈ TD.

Then we need to show that
Θv ◦Θ−1

u : Θu (U(v,u)) −→ Θv (U(v,u))

is a diffeomorphism. Take (C,L) ∈ Θu (U(v,u)) , such that Θu(w) = (C,L) for some w ∈ U(v,u) and

Θv ◦Θ−1
u (C,L) = Θv(w) = (B,N) .

Observe that
Umin
α (w) = span{u(α)

iα
+ Lα(u

(α)
iα

) : 1 ≤ iα ≤ rα},

Lα(u
(α)
iα

) + u
(α)
iα

=
∑

1≤iβ≤rβ
β∈S(α)

C
(α)
iα,(iβ)β∈S(µ)

(w)
⊗

β∈S(α)

(Lβ(u
(β)
iβ

) + u
(β)
iβ

),

Umin
α (w) = span{u(α)

iα
+Nα(u

(α)
iα

) : 1 ≤ iα ≤ rα}

and
Nα(u

(α)
iα

) + u
(α)
iα

=
∑

1≤iβ≤rβ
β∈S(α)

B
(α)
iα,(iβ)β∈S(µ)

(w)
⊗

β∈S(α)

(Nβ(u
(β)
iβ

) + u
(β)
iβ

)

holds for 1 ≤ iα ≤ rα and α ∈ TD\{D}. Then it is possible to construct an isomorphism Sα : Rrα×(×β∈S(α) rβ)
∗ →

Rrα×(×β∈S(α) rβ)
∗ such that Sα(C(α)) = B(α) for each α ∈ TD \ {D}. Hence the map S : Rr

∗ → Rr
∗ given by

S(C) = B is also an isomorphism and we can write

Θv ◦Θ−1
u (C,L) = (S(C),N) = (S(C),Ψv ◦ ΛTD (w))) .

Since ΛTD (w) = U(w) and Umin
α (w) = Ψ−1

Umin
α (u)⊕Wmin

α (u)
(Lα) for each α ∈ TD \ {D}, we obtain

Θv ◦Θ−1
u (C,L) =

(
S(C),

(
Ψv ◦Ψ−1

u

)
(L)
)
.

From [4] we know that ΨUmin
α (v)⊕Wmin

α (v) ◦Ψ−1
Umin
α (u)⊕Wmin

α (u)
from

ΨUmin
α (u)⊕Wmin

α (u)

(
G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α
)
)
⊂ L(Umin

α (u),Wmin
α (u))
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to
ΨUmin

α (v)⊕Wmin
α (v)

(
G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α
)
)
⊂ L(Umin

α (v),Wmin
α (v))

is an analytic diffeomorphism for each α ∈ TD \ {D}. Then Ψv ◦Ψ−1
u is an analytic diffeomorphism from

Ψu

(
×

α∈TD\{D}

(
G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α
)
))
⊂ LTD (u)

to

Ψv

(
×

α∈TD\{D}

(
G(Wmin

α (u),Vα‖·‖α
) ∩G(Wmin

α (v),Vα‖·‖α

))
⊂ LTD (v).

Clearly, AT3 holds and the theorem follows.

By using the geometric structure of local charts for the manifold FT r(v), we can identify its tangent
space at v with Tv(FT r(VD)) := Rr × LTD (v). We will consider Tv(FT r(VD)) endowed with the product
norm

‖‖(C,L)‖‖ :=
∑

α∈TD\L(TD)

‖C(α)‖F +
∑

α∈TD\{D}

‖Lα‖Wmin
α (v)←Umin

α (v).

with ‖ · ‖F the Frobenius norm.

Note that L(Vα‖·‖α
,Vα‖·‖α

) endowed with the norm ‖ · ‖Vα‖·‖α
←Vα‖·‖α

is a Banach space. Thus, even if

V‖·‖α is a Hilbert space for all α ∈ TD \ {D}, the set LTD is a Banach space. The following lemma allows

us to identify Lα ∈ L
(
Umin
α (v),Wmin

α (v)
)

with a vector in Wmin
α (v)dimUmin

α (v) for each α ∈ TD \ {D}.

Lemma 6.3 Assume that Vα‖·‖α
= ‖·‖α

⊗
j∈α Vj is a Banach space for α ∈ TD \ {D}. Then for each

v ∈ Vα = a

⊗
j∈α Vj the Banach space L(Umin

α (v),Wmin
α (v)) is linearly isomorphic to Wmin

α (v)dimUmin
α (v).

Proof. Since v ∈ Vα, then dimUmin
α (v) = rα < ∞ and every Lα ∈ L

(
Umin
α (v),Wmin

α (v)
)

is a finite

rank operator, i.e., dimLα(Umin
α (v)) < ∞. In consequence, L

(
Umin
α (v),Wmin

α (v)
)

is linearly isomorphic to
Umin
α (v)∗ ⊗aWmin

α (v) by means the canonical isomorphism

Ξα

(
n∑
k=1

ϕ
(α)
k ⊗ w(α)

k

)
(u(α)) :=

n∑
k=1

ϕ
(α)
k (u(α))w

(α)
k ,

(see, e.g., Proposition 16.8 in [5]). Moreover, Umin
α (v)∗⊗aWmin

α (v) is linearly isomorphic to Rrα⊗aWmin
α (v) =

Wmin
α (v)rα (simply consider (xk)rαk=1 ⊗ w = (xkw)rαk=1) and the lemma follows.

Corollary 6.4 Assume that Vα‖·‖α
is a Hilbert space with norm ‖ · ‖α for α ∈ TD \ {D}. Then FT r(VD)

is an analytical Hilbert manifold.

Proof. Lemma 6.3 allows us to identify each Lα ∈ L
(
Umin
α (v),Wmin

α (v)
)

with a (w
(α)
sα )sα=rα

sα=1 ∈ Wmin
α (v)rα ,

where w
(α)
sα = Lα(uα(sα)) and Umin

α (v) = span {uα(1), . . . ,u
α
(rα)}, for α ∈ TD \ {D}. Thus we can identify each

(C,L) ∈ U(v) with a pair

(C,W) ∈ Rr
∗ × ×

α∈TD\{D}
Wmin
α (v)rα ,

where W := ((w
(α)
sα )sα=rα

sα=1 )α∈TD\{D}. We assume that Rr
∗ ××α∈TD\{D}W

min
α (v)rα is an open subset of the

Hilbert space Rr ××α∈TD\{D}W
min
α (v)rα endowed with the product norm

‖ (C,W) ‖× :=
∑

α∈TD\L(TD)

‖Cα‖F +
∑

α∈TD\{D}

rα∑
sα=1

‖w(α)
sα ‖α.
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It allows us to define local charts, also denoted by Θv, by

Θ−1
v : Rr

∗ × ×
α∈TD\{D}

Wmin
α (v)rα −→ U(v),

where Θ−1
v (C,W) = w. Here w is given by (6.1)–(6.2) putting Lα(u

(α)
iα

) = w
(α)
iα
, 1 ≤ iα ≤ rα and α ∈ TD \

{D}. Since each local chart is defined over an open subset of the Hilbert space Rr××α∈TD\{D}W
min
α (v)rα ,

the corollary follows.

7 FT r(VD) as an embedded submanifold

Let V‖·‖D := VD
‖·‖D

be a tensor Banach space, where ‖ · ‖D is a norm, and consider in FT r(VD) the
topology induced by the norm ‖ · ‖D. The natural ambient space for FT r(VD) is the Banach tensor space
V‖·‖D . Since the natural inclusion i : FT r(VD) −→ V‖·‖D , given by i(v) = v, is a homeomorphism onto
its image, we will study i as a map between Banach manifolds. To this end we introduce the following
definitions.

Definition 7.1 Let X and Y two Banach manifolds. Let F : X → Y be a map. We shall say that F is a Cr
morphism if given x ∈ X there exists a chart (U,ϕ) at x and a chart (W,ψ) at F (x) such that F (U) ⊂ W,
and the map

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(W )

is a Cr-Fréchet differentiable map.

To describe i as a morphism, we proceed as follows. Given v ∈ FT r(VD), we consider U(v), a local
neighbourhood of v, and then

i ◦Θ−1
v : Rr

∗ × LTD (v)→ V‖·‖D , (C,L) 7→
∑

1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

⊗
α∈S(D)

(Lα(u
(α)
iα

) + u
(α)
iα

),

where for each µ ∈ TD \ {D} such that S(µ) 6= ∅ we have

Lµ(u
(µ)
iµ

) + u
(µ)
iµ

=
∑

1≤iβ≤rβ
β∈S(µ)

C
(µ)
iµ,(iβ)β∈S(µ)

⊗
β∈S(µ)

(Lβ(u
(β)
iβ

) + u
(β)
iβ

)

for 1 ≤ iµ ≤ rµ.
Our next step is to recall the definition of the differential as a morphism which gives a linear map between

the tangent spaces of the manifolds involved with the morphism.

Definition 7.2 Let X and Y two Banach manifolds. Let F : X → Y be a Cr morphism, i.e.,

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(W )

is a Cr-Fréchet differentiable map, where (U,ϕ) is a chart in X at x and (W,ψ) is a chart in Y at F (x).
For x ∈ X, we define

TxF : Tx(X) −→ TF (x)(Y ), v 7→ [(ψ ◦ F ◦ ϕ−1)′(ϕ(x))]v.

Assume that i ◦Θ−1
v is Fréchet differentiable, then Tvi : Rr × LTD (v)→ V‖·‖D , is given by

Tvi(Ċ, L̇) = [(i ◦Θ−1
v )′(Θv(v))](Ċ, L̇).

The next lemma describes the tangent map Tvi.
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Lemma 7.3 Let v ∈ FT r(VD) be such that Θv(v) = (C(v), 0), where C(v) = (C(α))α∈TD\L(TD), 0 =
(0)α∈TD\{D} and

Umin
α (v) = span {u(α)

iα
: 1 ≤ iα ≤ rα}

for α ∈ TD \ {D}. Then the following statements hold.

(a) Assume that the tensor product map
⊗

is continuous. Then the map i ◦ Θ−1
v from Rr

∗ × LTD (v) to
V‖·‖D is Fréchet differentiable, and hence Tvi ∈ L

(
Tv(FT r(VD)),V‖·‖D

)
.

(b) Assume (Ċ, L̇) ∈ Tv(FT r(VD)), where Ċ = (Ċ(α))α∈TD\L(TD) and L̇ = (L̇α)α∈TD\{D}. Then w =

Tvi(Ċ, L̇) if and only

w =
∑

1≤iα≤rα
α∈S(D)

Ċ
(D)
(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

+
∑

µ∈S(D)

∑
1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

L̇µ(u
(µ)
iµ

)⊗
⊗

α∈S(D)
α 6=µ

u
(α)
iα

 ,

where for each γ ∈ TD \ {D} with S(γ) 6= ∅,

L̇γ(u
(γ)
iγ

) =
∑

1≤iβ≤rβ
β∈S(γ)

Ċ
(γ)
iγ ,(iβ)β∈S(γ)

⊗
β∈S(γ)

u
(β)
iβ

+
∑

δ∈S(γ)

∑
1≤iβ≤rβ
β∈S(γ)

C
(γ)
iγ ,(iβ)β∈S(γ)

L̇δ(u(δ)
iδ

)⊗
⊗
β 6=δ

β∈S(γ)

u
(β)
iβ


holds for 1 ≤ iγ ≤ rγ .

Proof. To prove statement (a), observe that for each uα ∈ Umin
α (v), α ∈ TD \ {D}, the map

Φuα : L(Umin
α (v),Wmin

α (v))→Wmin
α (v), Lα 7→ Lα(uα),

is linear and continuous, and hence Fréchet differentiable. Clearly, its differential is given by [Φ′uα(Lα)](Hα) =
Hα(uα). Thus, if the tensor product map

⊗
is continuous, by Proposition 3.5 it is also Fréchet differentiable.

Then, by the chain rule, the map Θ−1
v is also Fréchet differentiable. Since Tvi(Ċ, L̇) = [(i◦Θ−1

v )′(C, 0)](Ċ, L̇),
(a) follows. Statement (b) follows by using the chain rule.

Next we recall the definition of an immersion between manifolds.

Definition 7.4 Let F : X → Y be a morphism between Banach manifolds and let x ∈ X. We shall say that
F is an immersion at x, if there exists an open neighbourhood X1 of x in X such that the restriction of F
to X1 induces an isomorphism of X1 onto a submanifold of Y. We say that F is an immersion if it is an
immersion at each point of X.

For manifolds modelled on Banach spaces we have the following criterion for immersions (see Proposition
2.2 in [16]).

Proposition 7.5 Let X,Y be Banach manifolds of class Cp (p ≥ 1). Let F : X → Y be a Cp morphism and
x ∈ X. Then F is an immersion at x if and only if TxF is injective and TxF (Tx(X)) is a complemented
subspace.

A related concept with an immersion between Banach manifolds is the following. Assume that X and Y
are Banach manifolds and let f : X −→ Y be a Cr morphism. If f is an injective immersion, then f(X) is
called an immersed manifold of Y .

Recall that there exists injective immersions which are not isomorphisms onto manifolds. It allows us to
introduce the following definition.

Definition 7.6 An injective immersion f : X −→ Y, i.e., a homeomorphism onto f(X) with the relative
topology induced from Y is called an embedding. Moreover, if f : X −→ Y is an embedding, then f(X) is
called an embedded submanifold.
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From Lemma 7.3(b) we known that Tvi is injective. Thus, to show that i is an inmersion, and hence an
embedding, we need to prove that Tv(FT r(VD)) is a complemented subspace of V‖·‖D . In the next result,
that will be useful, we prove that, if ‖ · ‖D is a uniform crossnorm, then Tvi is a linear isomorphism from
Tv(FT r(VD)) to a linear closed subspace of V‖·‖D . It allows us to identify the tangent space Tv(FT r(VD))
with a closed subspace of V‖·‖D .

Theorem 7.7 Let V‖·‖D be a tensor Banach space such that ‖ · ‖D is a uniform crossnorm. Then for each
v ∈ FT r(VD), the set Tvi (Tv(FT r(VD))) is a closed subspace of V‖·‖D linearly isomorphic to the Banach
space Tv(FT r(VD)).

Proof. To prove that Tvi (Tv(FT r)) is a closed subspace in V‖·‖, take a sequence

(Ċn, L̇n) :=
(

(Ċ(α)
n )α∈TD\L(TD), (L̇

(n)
α )α∈TD\{D}

)
,

in Tv(FT r(VD)) such that wn := Tvi((Ċn, L̇n)) −→ w as n → ∞. We want to show the existence of a
(Ċ, L̇) ∈ Tv(FT rVD) such that w = Tvi((Ċ, L̇)). To this end, from Lemma 7.3, we may assume

wn =
∑

1≤iα≤rα
α∈S(D)

(Ċ(D)
n )(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

+
∑

µ∈S(D)

∑
1≤iα≤rα
α∈S(D)

(C(D))(iα)α∈S(D)

L̇(n)
µ (u

(µ)
iµ

)⊗
⊗

α∈S(D)
α6=µ

u
(α)
iα

 ,

where for each γ ∈ TD \ {D} such that S(γ) 6= 0, we have

L̇(n)
γ (u

(γ)
iγ

) =
∑

1≤iβ≤rβ
β∈S(γ)

(Ċ(γ)
n )iγ ,(iβ)β∈S(γ)

⊗
β∈S(µ)

u
(β)
iβ

+
∑

δ∈S(γ)

∑
1≤iβ≤rβ
β∈S(γ)

C
(γ)
iγ ,(iβ)β∈S(γ)

L̇(n)
δ (u

(δ)
iδ

)⊗
⊗
β 6=δ

β∈S(γ)

u
(β)
iβ

 ,

for 1 ≤ iγ ≤ rγ .

To prove the theorem we will show that for each γ ∈ TD such that S(γ) 6= 0, there exist Ċ(γ) ∈ R×α∈S(γ) rα

and (L̇µ)µ∈S(γ) ∈×α∈S(γ) L(Umin
α (v),Wmin

α (v)) such that Ċ
(γ)
n → Ċ(γ) and (L̇

(n)
µ )µ∈S(γ) → (L̇µ)µ∈S(γ) as

n→∞. In consequence, taking

(Ċ, L̇) :=
(

(Ċ(α))α∈TD\L(TD), (L̇α)α∈TD\{D}

)
,

we have (Ċn, L̇n)→ (Ċ, L̇) as n→∞ and the continuity of Tvi proves the theorem.

To show this, we proceed inductively along the tree. First, assume γ = D. To simplify the notation, we
denote6

z(Ċ(D)
n ) :=

∑
1≤iα≤rα
α∈S(D)

(Ċ(D)
n )(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα

and

z(L̇(n)
µ ) :=

∑
1≤iα≤rα
α∈S(D)

(C(D)
n )(iα)α∈S(D)

L̇(n)
µ (u

(µ)
iµ

)⊗
⊗

α∈S(D)
α 6=µ

u
(α)
iα


for each µ ∈ S(D), such that

wn = z(Ċ(D)
n ) +

∑
µ∈S(D)

z(L̇(n)
µ ).

6We separate the case D from other nodes (see later), since the notations are different.
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We introduce the following linear and bounded maps

P(S(D)) =
⊗

α∈S(D)

PUmin
α (v)⊕Wmin

α (v), P(S(D))
µ := PWmin

µ (v)⊕Umin
µ (v) ⊗ P

(S(D))
[µ] ,

where
P(S(D))

[µ] :=
⊗

β∈S(D),β 6=µ

PUmin
β (v)⊕Wmin

β (v).

Clearly, P(S(D))(wn) = z(Ċ
(D)
n ) and P(S(D))

µ (wn) = z(L̇
(n)
µ ), for each µ ∈ S(D). HenceP(S(D)) +

∑
µ∈S(D)

P(S(D))
µ

 (wn) = wn.

Since wn → w we have

z(Ċ(D)
n ) =

∑
1≤iα≤rα
α∈S(D)

(Ċ(D)
n )(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα
→ P(S(D))(w).

Then there exists Ċ(D) ∈ R×α∈S(D) rα such that

P(S(D))(w) =
∑

1≤iα≤rα
α∈S(D)

(Ċ(D))(iα)α∈S(D)

⊗
α∈S(D)

u
(α)
iα
,

and Ċ
(D)
n → Ċ(D) as n→∞.

On the other hand,

z(L̇(n)
µ ) =

∑
1≤iα≤rα
α∈S(D)

C
(D)
(iα)α∈S(D)

L̇(n)
µ (u

(µ)
iµ

)⊗
⊗

α∈S(D)
α6=µ

u
(α)
iα

→ P(S(D))
µ (w),

for each µ ∈ S(D). We claim, for each fixed µ ∈ S(D), the existence of

{wiµ : 1 ≤ iµ ≤ rµ} ⊂Wmin
µ (v)

such that
P(S(D))
µ (w) =

∑
1≤iβ≤rβ
β∈S(D)

C
(D)
(iβ)β∈S(D)

wiµ ⊗
⊗

β∈S(D)
β 6=µ

u
(β)
iβ
.

To prove the claim, observe that

z(L̇(n)
µ ) ∈ T(rα)α∈S(D)

Wmin
µ (v)⊗a

a

⊗
β 6=µ

β∈S(D)

Umin
β (v)


 ,

which is a weakly closed set in V‖·‖D , and hence closed. In consequence, there exist

{w′iµ : 1 ≤ iµ ≤ rµ} ⊂Wmin
µ (v)

and S(D) ∈ R×α∈S(D) rα such that

P(S(D))
µ (w) =

∑
1≤iβ≤rβ
β∈S(D)

S
(D)
(iβ)β∈S(D)

w′iµ ⊗
⊗

β∈S(D)
β 6=µ

u
(β)
iβ
.
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Fix 1 ≤ i′µ ≤ rµ and let (iα)α∈S(D) be such that iµ = i′µ. Now, take ϕ[i′µ] ∈ a

⊗
α∈S(D)
α 6=µ

V ∗α such that

ϕ[i′µ](
⊗

α∈S(D)
α6=µ

u
(α)
iα

) = 1 and ϕ[i′µ](
⊗

α∈S(D)
α6=µ

u
(α)
i′α

) = 0 for all (i′α)α∈S(D) 6= (iα)α∈S(D). Since

z(L̇(n)
µ )− P(S(D))

µ (w)→ 0,

then (idµ⊗ϕ[i′µ])
(
z(L̇

(n)
µ )− P(S(D))

µ (w)
)
→ 0 ∈ Vµ. Thus, C

(D)
(iα)α∈S(D)

L̇
(n)
µ (uiµ)→ S

(D)
(iα)α∈S(D)

w′iµ . It is clear

that if C
(D)
(iα)α∈S(D)

= 0 then S
(D)
(iα)α∈S(D)

= 0. Otherwise,

L̇(n)
µ (u

(µ)
iµ

)→
S

(D)
(iα)α∈S(D)

C
(D)
(iα)α∈S(D)

w′iµ ,

when C
(D)
(iα)α∈S(D)

6= 0. Introduce

wiµ :=


S

(D)

(iα)α∈S(D)

C
(D)

(iα)α∈S(D)

w′iµ if C
(D)
(iα)α∈S(D)

6= 0

0 otherwise,

and the claim follows. Finally, define the linear map L̇µ ∈ L(Umin
µ (v),Wmin

µ (v)) by L̇µ(uiµ) := wiµ for each
1 ≤ iµ ≤ rµ, and hence

P(S(D))
µ (w) =

∑
1≤iβ≤rβ
β∈S(D)

C
(D)
(iβ)β∈S(D)

L̇µ(uiµ)⊗
⊗

β∈S(D)
β 6=µ

u
(β)
iβ

 .

Moreover, L̇
(n)
µ → L̇µ as n→∞.

Let µ ∈ TD \ {D} such that S(µ) 6= ∅. Then Ċ
(µ)
n → Ċ(µ) and L̇

(n)
γ → L̇γ for all γ ∈ S(µ) as n→∞. In

particular, we have

L̇(n)
γ (u

(γ)
iγ

)→ L̇γ(u
(γ)
iγ

)

for 1 ≤ iγ ≤ rγ . Observe that for each γ ∈ S(µ) such that S(γ) 6= ∅ we write

L̇(n)
γ (u

(γ)
iγ

) = ziγ (Ċ(γ)
n ) +

∑
δ∈S(γ)

ziγ (L
(n)
δ ),

where
ziγ (Ċ(γ)

n ) :=
∑

1≤iα≤rα
α∈S(γ)

(Ċ(γ)
n )(iα)α∈S(γ)

⊗
α∈S(γ)

u
(α)
iα

and

ziγ (L̇(n)
µ ) :=

∑
1≤iα≤rα
α∈S(γ)

(C(γ)
n )iγ ,(iα)α∈S(γ)

L̇(n)
µ (u

(µ)
iµ

)⊗
⊗

α∈S(γ)
α6=µ

u
(α)
iα


for each µ ∈ S(γ). Thus we can repeat the proof substituting D by γ, obtaining Ċγ and (L̇δ)δ∈S(γ) such

that Ċγn → Ċγ , L̇
(n)
δ → L̇δ, where for each δ ∈ S(γ) such that S(δ) 6= ∅ we have

L̇δ(u
(δ)
iδ

) =
∑

1≤iβ≤rβ
β∈S(δ)

Ċ
(γ)
(iβ)β∈S(γ)

⊗
β∈S(γ)

u
(β)
iβ

+
∑

η∈S(γ)

∑
1≤iβ≤rβ
β∈S(γ)

C
(γ)
(iβ)β∈S(γ)

L̇η(u
(η)
iη

)⊗
⊗
β 6=η

β∈S(γ)

u
(β)
iβ


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for 1 ≤ iδ ≤ rδ. This ends the proof of the theorem.

Since in a Hilbert space every linear subspace is closed if and only if it is complemented, by Proposition 7.5
and Theorem 7.7, we obtain the following result.

Corollary 7.8 Let V‖·‖D be a tensor Hilbert space such that ‖·‖D is a uniform crossnorm. Then FT r(VD)
is an embedded submanifold of V‖·‖D . Moreover, the canonical scalar product (8.9) is uniform.

Finally, we also have the next corollary.

Corollary 7.9 Let V‖·‖D be a reflexive tensor Banach space such that ‖ · ‖D is a uniform crossnorm and
take v ∈ FT r(VD). Then for each u̇ ∈ V‖·‖D there exists v̇best ∈ Tvi (Tv(FT r(VD))) such that

‖u̇− v̇best‖ = min
v̇∈Tvi(Tv(FT r(VD)))

‖u̇− v̇‖. (7.1)

8 On the Dirac–Frenkel variational principle on tensor Banach
spaces

8.1 Model Reduction in tensor Banach spaces

In this section we consider the abstract ordinary differential equation in a reflexive tensor Banach space
V‖·‖D , with a uniform crossnorm ‖ · ‖D, given by

u̇(t) = F(t,u(t)), for t ≥ 0 (8.1)

u(0) = u0, (8.2)

where we assume u0 6= 0 and F : [0,∞)×V‖·‖D −→ V‖·‖D satisfying the usual conditions. We want (or:
’would like’) to approach u(t), for t ∈ I := (0, ε) for some ε > 0, by a differentiable curve t 7→ vr(t) from I
to FT r(VD), where r ∈ NTD is such that vr(0) = v0 satisfies

‖u0 − v0‖D = min
w∈FT r(VD)

‖u0 −w‖D = min
w∈BT r(VD)

‖u0 −w‖D.

Our main goal is to construct a Reduced Order Model of (8.1)–(8.2) over the Banach manifold FT r(VD).
Since F(t,vr(t)) in V‖·‖D , for each t ∈ I, and Tvr(t)i

(
Tvr(t)(FT r(VD))

)
is a closed linear subspace in V‖·‖D ,

we have the existence of a v̇r(t) ∈ Tvr(t)i
(
Tvr(t)(FT r(VD))

)
such that

‖v̇r(t)− F(t,vr(t))‖D = min
v̇(t)∈Tvr(t)i(Tvr(t)(FT r(VD)))

‖v̇(t)− F(t,vr(t))‖D,

It is well-known that, if V‖·‖D is a Hilbert space, then v̇r(t) = Pvr(t)(F(t,vr(t))), where

Pvr(t) = P
Tvr(t)i(Tvr(t)(FT r(VD)))⊕Tvr(t)i(Tvr(t)(FT r(VD)))

⊥

is called the metric projection. It has the following important property: v̇r(t) = Pvr(t)(F(t,vr(t))) if and
only if

〈v̇r(t)− F(t,vr(t)), v̇(t)〉D = 0 for all v̇(t) ∈ Tvr(t)i
(
Tvr(t)(FT r(VD))

)
.

The concept of a metric projection can be extended to the Banach setting. To this end we recall the
following definitions. A Banach space X with norm ‖ · ‖ is said to be strictly convex if ‖x + y‖/2 < 1 for
all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y. It is uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any two
sequences {xn}n∈N and {yn}n∈N such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn + yn‖/2 = 1. It is known that
a uniformly convex Banach space is reflexive and strictly convex. A Banach space X is said to be smooth if
the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t
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exists for all x, y ∈ U := {z ∈ X : ‖z‖ = 1}. Finally, a Banach space X is said to be uniformly smooth if its
modulus of smoothness

ρ(τ) = sup
x,y∈U

{
‖x+ τy‖+ ‖x− τy‖

2
− 1

}
, τ > 0,

satisfies the condition limτ→0 ρ(τ) = 0. In uniformly smooth spaces, and only in such spaces, the norm is
uniformly Fréchet differentiable. A uniformly smooth Banach space is smooth. The converse is true if the
Banach space is finite-dimensional. It is known that the space Lp (1 < p < ∞) is a uniformly convex and
uniformly smooth Banach space.

Let 〈·, ·〉 : X ×X∗ −→ R denote the duality map, i.e.,

〈x, f〉 := f(x).

The normalised duality mapping J : X −→ 2X
∗

is defined by

J(x) := {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = (‖f‖∗)2}.

Notice that, in a Hilbert space, the duality mapping is the identity operator. The duality mapping J has
the following properties (see [2]):

(a) If X is smooth, the map J is single-valued;

(b) if X is smooth, then J is norm–to–weak∗ continuous;

(c) if X is uniformly smooth, then J is uniformly norm–to–norm continuous on each bounded subset of
X.

Assume that V‖·‖D is a reflexive and strictly convex tensor Banach space with a uniform crossnorm ‖·‖D.
For F(t,vr(t)) in V‖·‖D , with a fixed t ∈ I, it is known that the set{

v̇r(t) : ‖v̇r(t)− F(t,vr(t))‖D = min
v̇(t)∈Tvr(t)i(Tvr(t)(FT r(VD)))

‖v̇(t)− F(t,vr(t))‖D

}

is always a singleton. Let Pvr(t) be the mapping of V‖·‖D onto Tvr(t)i
(
Tvr(t)(FT r(VD))

)
defined by

v̇r(t) := Pvr(t)(F(t,vr(t))) if and only if

‖v̇r(t)− F(t,vr(t))‖D = min
v̇(t)∈Tvr(t)i(Tvr(t)(FT r(VD)))

‖v̇(t)− F(t,vr(t))‖D.

It is also called the metric projection. The classical characterisation of the metric projection allows us to
state the next result.

Theorem 8.1 Assume that V‖·‖D is a reflexive and strictly convex tensor Banach space with a uniform
crossnorm ‖ · ‖D. Then for each t ∈ I we have

v̇r(t) = Pvr(t)(F(t,vr(t))) (8.3)

if and only if

〈v̇r(t)− v̇(t), J(F(t,vr(t))− v̇r(t))〉 ≥ 0 for all v̇(t) ∈ Tvr(t)i
(
Tvr(t)(FT r(VD))

)
. (8.4)

An alternative approach is the use of the so-called generalised projection operator (see also [2]). To
formulate this, we will use the following framework. Assume now that V‖·‖D is a reflexive, strictly convex
and smooth tensor Banach space with a uniform crossnorm ‖ · ‖D. Following [14], we can define a function
φ : V‖·‖D ×V‖·‖D −→ R by

φ(u,v) = ‖u‖2D − 2〈u, J(v)〉+ ‖v‖2D,
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where 〈·, ·〉 denotes the duality map and J is the normalised duality mapping. It is known that the set{
v̇r(t) : φ(v̇r(t),F(t,vr(t))) = min

v̇(t)∈Tvr(t)i(Tvr(t)(FT r(VD)))
φ(v̇(t),F(t,vr(t)))

}

is always a singleton. It allows us to define a map Πvr(t) : V‖·‖D −→ Tvr(t)i
(
Tvr(t)(FT r(VD))

)
by v̇r(t) :=

Πvr(t)(F(t,vr(t))) if and only if

φ(v̇r(t),F(t,vr(t))) = min
v̇(t)∈Tvr(t)i(Tvr(t)(FT r(VD)))

φ(v̇(t),F(t,vr(t))).

The map Πvr(t) is called the generalised projection.

Remark 8.2 Emphasize also that, in general, the operators Pvr(t) and Πvr(t) are nonlinear in Banach (not
Hilbert) spaces.

Again, a classical characterisation of the generalised projection give us the following theorem.

Theorem 8.3 Assume that V‖·‖D is a reflexive, strictly convex and smooth tensor Banach space with a
uniform crossnorm ‖ · ‖D. Then for each t ∈ I we have

v̇r(t) = Πvr(t)(F(t,vr(t))) (8.5)

if and only if

〈v̇r(t)− v̇(t), J(F(t,vr(t)))− J(v̇r(t))〉 ≥ 0 for all v̇(t) ∈ Tvr(t)i
(
Tvr(t)(FT r(VD))

)
. (8.6)

The next corollary is a consequence either of Theorem 8.1 or Theorem 8.3.

Corollary 8.4 Assume that V‖·‖D is a tensor Hilbert space with a uniform crossnorm ‖ · ‖D. Then for each
t ∈ I we have

v̇r(t) = Pvr(t)(F(t,vr(t))) (8.7)

if and only if

〈v̇r(t)− F(t,vr(t)), v̇(t)〉D = 0 for all v̇(t) ∈ Tv(t)i
(
Tv(t)(FT r(VD))

)
. (8.8)

8.2 The time–dependent Hartree method

Let 〈·, ·〉j be a scalar product defined on Vj (1 ≤ j ≤ d), i.e., Vj is a pre-Hilbert space. Then V = a

⊗d
j=1 Vj

is again a pre-Hilbert space with a scalar product which is defined for elementary tensors v =
⊗d

j=1 v
(j) and

w =
⊗d

j=1 w
(j) by

〈v,w〉 =

〈
d⊗
j=1

v(j),

d⊗
j=1

w(j)

〉
:=

d∏
j=1

〈
v(j), w(j)

〉
j

for all v(j), w(j) ∈ Vj . (8.9)

This bilinear form has a unique extension 〈·, ·〉 : V × V → R. One verifies that 〈·, ·〉 is a scalar product,
called the induced scalar product. Let V be equipped with the norm ‖·‖ corresponding to the induced scalar

product 〈·, ·〉 . As usual, the Hilbert tensor space V‖·‖ = ‖·‖
⊗d

j=1 Vj is the completion of V with respect
to ‖·‖. Since the norm ‖·‖ is derived via (8.9), it is easy to see that ‖·‖ is a reasonable and even uniform
crossnorm.

Let us consider in V‖·‖ a flow generated by a densely defined operator A ∈ L(V‖·‖,V‖·‖). More precisely,
there exists a collection of bijective maps ϕt : D(A) −→ D(A), here D(A) denotes the domain of A, satisfying

(i) ϕ0 = id,
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(ii) ϕt+s = ϕt ◦ϕs, and

(ii) for u0 ∈ D(A), the map t 7→ ϕt is differentiable as a curve in V‖·‖, and u(t) := ϕt(u0) satisfies

u̇ = Au, (8.10)

u(0) = u0. (8.11)

In this framework we want to study the approximation of a solution u(t) = ϕt(u0) ∈ V‖·‖ by a curve

vr(t) := λ(t)⊗dj=1 vj(t) in the Hilbert manifold M(1,...,1)(V), also called in [19] the Hartree manifold. The
time–dependent Hartree method consists in the use of the Dirac–Frenkel variational principle on the Hartree
manifold. More precisely, we want to solve the following Reduced Order Model:

v̇r(t) = Pvr(t)(Avr(t)) for t ∈ I, (8.12)

vr(0) = v0, (8.13)

with v0 = λ0 ⊗dj=1 v
(j)
0 ∈ M(1,...,1)(V) being an approximation of u0

7. From Corollary 8.4, for each t > 0

we would like to find v̇r(t) ∈ Tvr(t)i
(
Tvr(t)(M(1,...,1)(V))

)
such that

〈v̇r(t)−Avr(t), v̇(t)〉 = 0 for all v̇(t) ∈ Tvr(t)i
(
Tvr(t)(M(1,...,1)(V))

)
, (8.14)

vr(0) = v0 = λ0 ⊗dj=1 v
(j)
0 , (8.15)

and where, without loss of generality, we may assume ‖v(j)
0 ‖j = 1 for 1 ≤ j ≤ d. A first result is the following.

Lemma 8.5 Let v ∈ C1(I,U(v0)), where v(0) = v0 ∈M(1,...,1)(V) and (U(v0),Θv0
) is a local chart for v0

inM(1,...,1)(V). Assume that v is also a C1-morphism between the manifolds I ⊂ R and U(v0) ⊂M(1,...,1)(V)

such that v(t) = λ(t)
⊗d

j=1 vj(t) for some λ ∈ C1(I,R) and vj ∈ C1(I, Vj) for 1 ≤ j ≤ d. Then

v̇(t) = λ̇(t)

d⊗
j=1

vj(t) + λ(t)

d∑
j=1

v̇j(t)⊗
⊗
k 6=j

vk(t) = Tv(t)i(Ttv(1)). (8.16)

Moreover, if vj(t) ∈ SVj , i.e., ‖vj(t)‖j = 1, for t ∈ I and 1 ≤ j ≤ d, then v̇j(t) ∈ Tvj(t)(SVj ) for t ∈ I and
1 ≤ j ≤ d.

Proof. First at all, we recall that by the construction of U(v0) it follows that Wmin
j (v0) = Wmin

j (v(t))

and that Umin
j (v0) = span{v(j)

0 } is linearly isomorphic to Umin
j (v(t)) for all t ∈ I and 1 ≤ j ≤ d. Assume

Θv0
(v(t)) = (λ(t), L1(t), . . . , Ld(t)), i.e.,

v(t) := λ(t)

d⊗
j=1

(idj + Lj(t)) (v
(j)
0 ),

where λ ∈ C1(I,R \ {0}), Lj ∈ C1(I,L(Umin
j (v0),Wmin

j (v0))) and (idj + Lj(t))(v
(j)
0 ) ∈ Umin

j (v(t)) for
1 ≤ j ≤ d. We point out that the linear map Ttv : R→ Tv(t)(M(1,...,1)(V)) is characterised by

Ttv(1) = (Θv0 ◦ v)′(t) = (λ̇(t), L̇1(t), . . . , L̇d(t)). (8.17)

Since Lj ∈ C1(I,L(Umin
j (v0),Wmin

j (v0))) then L̇j ∈ C0(I,L(Umin
j (v0),Wmin

j (v0))). Observe that Umin
j (v0)

and Umin
j (v(t)) have Wmin

j (v0) as a common complement. From Lemma 2.5 we known that

PUmin
j (v0)⊕Wmin

j (v0)|Umin
j (v(t)) : Umin

j (v(t)) −→ Umin
j (v0)

is a linear isomorphism. We can write

Lj(t) = Lj(t)PUmin
j (v0)⊕Wmin

j (v0) and L̇j(t) = L̇j(t)PUmin
j (v0)⊕Wmin

j (v0),

7Indeed, v0 can be chosen as the best approximation of u0 in M(1,...,1)(V) because M(1,...,1)(V) = T(1,...,1)(V) \ {0}.
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and then in (8.17) we identify L̇j(t) ∈ L(Umin
j (v0),Wmin

j (v0))) with

L̇j(t)PUmin
j (v0)⊕Wmin

j (v0)|Umin
j (v(t)) ∈ L(Umin

j (v(t)),Wmin
j (v0))).

Introduce vj(t) := (idj + Lj(t))(v
(j)
0 ) for 1 ≤ j ≤ d. Then

L̇j(t)(vj(t)) = L̇j(t)PUmin
j (v0)⊕Wmin

j (v0)|Umin
j (v(t))(v

(j)
0 + Lj(t)(v

(j)
0 )) = L̇j(t)(v

(j)
0 )

holds for all t ∈ I and 1 ≤ j ≤ d. Hence

v̇j(t) = L̇j(t)(v
(j)
0 ) = L̇j(t)(vj(t)) (8.18)

holds for all t ∈ I and 1 ≤ j ≤ d. From Lemma 7.3(b) and (8.17), we have

Tv(t)i(Ttv(1)) = λ̇(t)

d⊗
j=1

vj(t) + λ(t)

d∑
j=1

L̇j(t)(vj(t))⊗
⊗
k 6=j

vk(t),

and, by using (8.18) for v(t) = λ(t)
⊗d

j=1 vj(t), we obtain (8.16).

To prove the second statement, recall that Umin
j (v(t)) = span {vj(t)} and Vj = Umin

j (v(t)) ⊕Wmin
j (v0)

for 1 ≤ j ≤ d. Then we consider

Wmin
j (v0) = span {vj(t)}⊥ = {uj ∈ Vj : 〈uj , vj(t)〉j = 0} for 1 ≤ j ≤ d,

and hence 〈v̇j(t)), vj(t)〉j = 0 holds for 1 ≤ j ≤ d. From Remark 2.16, we have (v̇1(t), . . . , v̇d(t)) ∈
C(I,×d

j=1 Tvj(t)(SVj )), because of Wmin
j (v0) = Tvj(t)(SVj ) for 1 ≤ j ≤ d.

Before stating the next result, we introduce for vr(t) = λ(t)
⊗d

j=1 vj(t) the following time dependent
bilinear forms

ak(t; ·, ·) : Vk × Vk −→ R,

by

ak(t; zk, yk) :=

〈
A

zk ⊗⊗
j 6=k

vj(t)

 ,

yk ⊗⊗
j 6=k

vj(t)

〉

for each 1 ≤ k ≤ d. Now, we will show the next result (compare with Theorem 3.1 in [19]).

Theorem 8.6 (Time dependent Hartree method) The solution vr(t) = λ(t)
⊗d

j=1 vj(t) for (v1(t), . . . , vd(t)) ∈
×d

j=1 SVj of

v̇r(t) = Pvr(t)(Avr(t)) for t ∈ I, (8.19)

vr(0) = v0, (8.20)

satisfies
〈v̇j(t), ẇj(t)〉j − aj(t; vj(t), ẇj(t)) = 0 for all ẇj(t) ∈ Tvj(t)(SVj ), 1 ≤ j ≤ d,

and

λ(t) = λ0 exp

(∫ t

0

〈
A
(
⊗dj=1vj(s)

)
,⊗dj=1vj(s)

〉
ds

)
.

Proof. From Lemma 8.5 we have Tvr(t)

(
M(1,...,1)(V)

)
= R ××d

j=1 Tvj(t)(SVj ), Thus, for each ẇ(t) ∈
Tv(t)i

(
Tv(t)

(
M(1,...,1)(V)

))
there exists (β̇(t), ẇ1(t), . . . , ẇd(t)) ∈ R××d

j=1 Tvj(t)(SVj ), such that

ẇ(t) = β̇(t)

d⊗
j=1

vj(t) + λ(t)

d∑
j=1

ẇj(t)⊗
⊗
k 6=j

vk(t).
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Then (8.14) holds if and only if〈
v̇r(t)−Avr(t), β̇(t)

d⊗
j=1

vj(t) + λ(t)

d∑
j=1

ẇj(t)⊗
⊗
k 6=j

vk(t)

〉
= 0

for all (β̇(t), ẇ1(t), . . . , ẇd(t)) ∈ R××d
j=1 Tvj(t)(SVj ). Then

λ̇(t)β̇(t) + λ(t)2
d∑
j=1

〈v̇j(t), ẇj(t)〉j − 〈A d⊗
s=1

vs(t), ẇj(t)⊗
⊗
k 6=j

vk(t)〉


−λ(t)β̇(t)〈A

d⊗
j=1

vj(t),

d⊗
j=1

vj(t)〉 = 0,

i.e.,

β̇(t)

λ̇(t)− λ(t)〈A
d⊗
j=1

vj(t),

d⊗
j=1

vj(t)〉

 (8.21)

+λ(t)2
d∑
j=1

〈v̇j(t), ẇj(t)〉j − 〈A d⊗
s=1

vs(t), ẇj(t)⊗
⊗
k 6=j

vk(t)〉

 = 0 (8.22)

holds for all β̇(t) ∈ R and (ẇ1(t), . . . , ẇd(t)) ∈×d
j=1 Tvj(t)(SVj ). If λ(t) solves the differential equation

λ̇(t) =
〈
A
(
⊗dj=1vj(t)

)
,⊗dj=1vj(t)

〉
λ(t) (8.23)

λ(0) = λ0, (8.24)

i.e.,

λ(t) = λ0 exp

(∫ t

0

〈
A
(
⊗dj=1vj(s)

)
,⊗dj=1vj(s)

〉
ds

)
,

then the first term of (8.22) is equal to 0. Therefore, from (8.22) we obtain that for all j ∈ D,

〈v̇j(t), ẇj(t)〉j − 〈A
d⊗
s=1

vs(t), ẇj(t)⊗
⊗
k 6=j

vk(t)〉 = 0,

that is,
〈v̇j(t), ẇj(t)〉j − aj(t; vj(t), ẇj(t)) = 0

holds for all ẇj(t) ∈ Tvj(t)(SVj ), and the theorem follows.
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