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1. Introduction

Any acceptable model that prices interest rate derivatives
must fit the observed term structure. This idea, pioneered
by Ho and Lee (1986), has been explored in the past by
many other researchers, including Black and Karasinski
(1991) and Hull and White (1990).

Contemporary models are more complex because they
consider the evolution of the whole forward curve as an
infinite system of stochastic differential equations (Heath
et al. 1992) (HIM). In particular, they use a continuous
forward rate curve as initial input. In reality, one only
observes a discrete set composed either of bond prices or
swap rates. Therefore, in practice, the usual approach is
to interpolate the forward curve using splines or other
parametrized families of functions.

A very plausible question arises at this point: Choose a
specific parametric family, G, of functions that represent
the forward curve, and also an arbitrage-free interest rate
model M. Assume that we use an initial curve that lies
within the input for model M. Will this interest rate
model evolve through forward curves that lie within
the family? Motivated by this question, Bjork and
Christensen (1999) define the so-called consistent pairs
(M, G) as those whose answer to the above question is
positive. In particular, they studied the problem of
consistency between the family of curves proposed by
Nelson and Siegel (1987) and any HJM interest rate

*Corresponding author. Email: 1luis2001 @gmail.com

model with deterministic volatility, concluding that there
is no such interest model consistent with it.

We remark that the Nelson and Siegel interpolating
scheme is an important example of a parametric family of
forward curves, because it is widely adopted by central
banks (see, for instance, BIS 2005). Its forward curve
shape, Gns(z, ¢), is given by the expression

—Z4X —Z4X

Gns(z,X) = z1 + e ™  z3xe ™7,

where x denotes time to maturity and z the parameter
vector

z=1(z1,22,...).

Despite all the positive empirical features and general
acceptance by the financial community, Filipovic (1999)
has shown that there is no Ito6 process that is consistent
with the Nelson—Siegel family. In a recent study, De Rossi
(2004) applies consistency results to propose a consistent
exponential dynamic model, and estimates it using data
on LIBOR and UK swap rates. On the other hand,
Buraschi and Corielli (2005) add some results to this
theoretical framework, indicating that the use of incon-
sistent parametric families to obtain smooth interest rate
curves violates the standard self-financing arguments of
replicating strategies, with direct consequences in risk
management procedures.

In order to illustrate this situation, we describe a very
common fixed-income market procedure. In the real
world, practitioners usually re-estimate the yield curve
and HJM model parameters on a daily basis. This
procedure consists of two steps.
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e They fit the initial yield curve from discrete
market data (bond prices, swap rates,
short-term zero rates).

e They obtain an estimate of the parameters of
the HIM model, minimizing the pricing error of
some actively traded (plain vanilla) interest rate
derivatives (commonly swap options or caps).

In contrast to the parsimonious assumption that model
parameters are constant, an unstable HIM model param-
eter estimation is often observed. Perhaps this fact is not
relevant for mark to market, but it could have practical
consequences for the hedging portfolios associated with
these financial instruments. It should be remembered that
such dynamic strategies depend on the model assump-
tions. Thus, re-calibration is conceivable because practi-
tioners are aware of model risk. A particular HIM model
is not a perfect description of reality, and they are forced
to re-estimate day-to-day model parameters in order to
include new information that arrives from the market.
On the other hand, unstable estimates may be the result
of factors that are more theoretical, because the
above-mentioned setup does not take into account that
HJM model parameters are linked, in general, to the
initial yield curve fit parameters. If a practitioner uses an
interpolation scheme that is not consistent with the
model, then the parameters will be artificially forced to
change. Thus, it seems there are a plethora of motivations
for the study of the empirical evidence and the practical
implications that are predicted by a consistent HIM build
model.

The consistency hypothesis stated by Bjork implies that
the zero coupon bond curve has to be determined at the
same time as the parameters of the model. Angelini and
Herzel (2002, 2005) propose the use of an optimization
program related to the mentioned daily calibrations that
is compatible with this joint estimation. The milestone of
this methodology is the use of an objective function based
on an error measure for just the caps portfolio. Then, the
theoretical prices for the caps along the minimization of
this measure can be calculated at the same time that the
yield curve is fitted. This is an efficient method because
consistent families of yield curves behave well in a
Gaussian framework.

The purpose of this work is to extend the above
strategy to a more general framework. It modifies the
mentioned objective function by taking into account the
error measure for the discount bonds estimation. To this
we add an objective function using a convex combination
of the cap and the bond error measures, by means of a
fixed parameter. As a matter of fact, this approach is
richer in possible outcomes. We also test the robustness of
this extension using Monte-Carlo simulation.

To this end, we restrict ourselves to a particular
humped volatility HIM model, proposed by Ritchken
and Chuang (1999) and Mercurio and Moraleda (2000)
independently. We will discuss this formalization and give
some theoretical results relevant to our analysis. We chose
this model because it is quite popular and analytically
treatable. In particular, it provides closed formulas for

Europeans caps. Moreover, it is the one-factor Gaussian
model that seems better able to reproduce the humped
shape of the implied volatility term structure for caps,
that the normal market scenarios wusually depict.
Moreover, it is also the most flexible in other market
conditions. We perform our study by calibrating this
model, first using simulated data and second by a market
data set composed of the Euro and US discount factors
and the cap at-the-money flat volatilities quotes in two
different periods, as shown by figure 1 for the particular
case of the US market. For both Euro and US markets,
the first scenario depicts a normal fixed-income market
scenario, the term structure of implied volatilities for caps
(hereafter TSV) have a humped shape and the term
structure of interest rates (hereafter TSIR) is decreasing in
the short term with a local minimum, and then it increases
to mid-long-term maturities as a spoon shape. On the
other hand, the second period may be considered a
volatile period with a TSV monotonically decreasing, and
with a higher overall implied volatility and a TSIR
monotonically increasing without a local minimum. To
our knowledge this is the first attempt to extend the
search for empirical evidence to US market data.

The paper is organized as follows. In section 2 we give a
brief overview of the model and present in this context the
option valuation and the construction of the families
consistent with the model. Section 3 describes the
calibration procedure. Section 4 is devoted to empirical
results, first comparing the consistent calibration algo-
rithm with the non-consistent approaches with simulated
data, and then presenting the results of the fitting of the
different models with market data. In the last section we
give some final conclusions and remarks.

2. The model

Let W be a one-dimensional Wiener—Einstein stochastic
process defined in a complete probability space (2, F, P).
The single-factor Heath—-Jarrow—Morton (Heath et al.
1992) framework is based on the dynamics of the entire
forward rate curve, {r(x), x>0}. Thus, under Musiela’s
(1993) parametrization it follows that the infinite-
dimensional diffusion process given by

dr,(x) = B(r;, x)dt + o(r,, x)d W,

ro(x) = r*(x),

(D

where {r*(x), x>0}, can be interpreted as the observed
forward rate curve. The standard drift condition
derived by Heath ef al. (1992) can easily be transferred
to the Musiela parametrization (see, for instance,
Musiela 1993),

B, x) = %Vz(x) +o(rs, X) /x o(ry, s)ds.
0
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Figure 1. Market TSIR and TSV data in the two different
market scenarios.

Thus, a particular model is constructed by the choice of
an explicit volatility function o(r;, x). Our work is devoted
to a Gaussian humped volatility model where

o(ri, x) = o(x) = (« + px)e™,

1.e. o is a deterministic function depending only on time to
maturity, and then r,(x) is a Gaussian process.

2.1. Finite-dimensional realizations of Gaussian models

It should also be noted that o(x) is a one-dimensional
quasi-exponential (QE) function, because it is of the form

SO =) e 4 Y e [pi(x) cos(@ix) + g,(x) sin(@ix)],

with A;, «; and w; being real numbers and p; and g¢;
real polynomials. It is well known that if f(x) is an
m-dimensional QE function, then it admits the following
matrix representation:

f(x) = ce™B,

where A4 is an (n x n) matrix, B is an (n x m) matrix and ¢
is an n-dimensional row vector (see lemma 2.1 of Bjork
(2003)). Thus, o(x) can be written as

o(x) = ce™b, ®)

where

]

By means of proposition 2.1 of Bjork (2001) we can write
the forward rate equation (1) as

dg:(x) =Fgi(x)dr +o(x)dWi,  qo(x) =0, (3)

r(x) = qi(x) + 8:(x), “4)
where F is a linear operator defined by
0
=

and §,(x) is the deterministic process given by

F

S(x)=r"(x+1)+ /I (x4t —s)ds,
0

with X(-) = o(:) [, o(s)ds. Moreover, ¢,(x) has the con-
crete finite-dimensional realization

dZ, = AZ,dt + bdW,, Z, =0, (5)

q/(x) = C()Z;, (6)

because o is a QE function (see, for instance, proposition
2.3 of Bjork (2003)) with 4 and b as in (2) and
C(x)=ce™. Thus, (5) is a linear SDE in the narrow
sense (see Kloeden and Platen (1999) for details) with
explicit solution

!
Zz = (I),/ q);ldev, (7)
0
where
®, — el — e‘”[l +at  —a’t ]
t 1 —at

Now, with the definition of S(x) = [ o(u)du, it is easy to
obtain that

/t o(t+x—s)ds = : [S2(t + x) — S*(x)],

0

o

and, therefore, combining these explicit results with
decomposition (4) we arrive at the operative expression

) = (e ) S~ STl CZ )
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The most striking feature of the result sketched in (8) is
that, starting from the initial forward curve r*(x), it allows
the use of the Monte-Carlo simulation of future forward
curves produced by this particular HIM model. On the
other hand, as we will show later, equation (8) can also be
used to build the initial forward rate curve r*(x). It must
be remembered that it is consistent with the dynamics of
the model.

2.2. Interest rate option pricing

To calibrate the model by means of real data, we actually
need to determine the vector parameter 6 =(«, S, a). In
order to estimate the forward rate volatility, the statistical
analysis of past data is a possible approach, but
practitioners usually prefer implied volatility (lying
within some derivative market prices) based techniques.
This strategy involves a minimization problem where the
loss function can be taken as

10) =) (& =46, T,
i=1

where ¢(0,7;) is the ith theoretical derivative price
maturing at time =7}, and ¢ = ¢*(T;) is the ith market
price. As is well known (see proposition 24.15 and
pp. 364-366 of Bjork 2004) the price, at t =0, of the cap
is given by

n—1
(Ir)y=~10+ rK)(Z «D(x; )N(—d,.) — D(xf+1)N(—d—)>,

=0
©)
where

o — In[D(x;)/kD(xj11)] = %ﬁz(xj)’ (10)
Hx;)
the interval [0,7] is subdivided with equidistant
points, i.e.

xj=0U+Dr, j=0,1,....n, (11)

D(-) is the initial discount function, and x equals
(1+tK)~" with K denoting the cap rate.

The variable ¢ in (10) is intimately related to the
concrete multifactor Gaussian HIM model realization via
the particular [4, B, ¢] forward rate TSV selection:

92(x) = M(x;) Flx;) )M (x;),
where M(x;) is the matrix
M(x;) = cA™ (D) — et),

and F(-) satisfies
F() = f e *BB'e~1" ds.
0

Although inversion of the matrix A4, the series expansion
of e~ reveals that M is not a singular matrix even for
small values of parameter a. This result is also true for
other Gaussian HJM models built from QE forward TSV

families, because the matrix elements of 4 are, fortu-
nately, polynomial functions of the model parameters.
However, due to the numerical instability of the calibra-
tion process, when a— 0, an asymptotically equivalent
expression for ¢ must be used. Equations (9) and (10) also
express the effective influence of ab initio yield curve
estimation on cap pricing.

2.3. Consistent curves with Gaussian models

If we want to measure the actual impact that alternatives
to the Nelson—Siegel yield curve interpolating approach
produces on derivatives pricing and hedging, we need to
determine consistent families for this particular model.
The fundamental results can be found in Bjork and
Christensen (1999) in more detail. We adapt some of them
to our Gaussian case study without further technical
discussion for the general case.

Definition 2.1: Consider the space H defined as the space
of all C* functions,

r: Ry — R,

satisfying the norm condition

o) 00 n., 2
Iz =32 f (jx’n (x)) e " dx < oo,
0

n=0

where y is a fixed positive real number.

As proved by Bjork and Svensson (2001, proposi-
tion 4.2), this space H is a Hilbert space.

Theorem 2.2: Consider as given the mapping
G:Z—H,

where the parameter space Z is an open connected subset of
RY, H is a Hilbert space and the forward curve manifold
GC H is defined as G=1Im(G). The family G is consistent
with the one-factor model M with deterministic volatility
function o(-), if and only if

9,G(z, x) 4+ o(x) /X o(s)ds € Im[9.G(z, x)], (12)
0

o(x) € Im[d,G(z, x)], (13)
forall zeZ.

Statements (12) and (13) are called, respectively, the
consistent drift and the consistent volatility conditions.
These are easy to apply in concrete cases as shown by
Bjork and Christensen (1999) and De Rossi (2004),
among others. For the particular one-factor model we
consider throughout this work, propositions 7.2 and 7.3
of Bjork and Christensen (1999) may be directly applied
to obtain the following useful result.

Proposition 2.3:  The family
G(z,X) = (21 + 22X) €™ + (23 + z4x + zsx7) e >* (14)

is the minimal dimension consistent family with the model
characterized by o(x) = (a+ Bx) e “".
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Moreover, it should also be noted that augmented
families related to (14) can be constructed by adding to
G,, an arbitrary function ¢, that is, the map

G(z,x) = Gu(z, %) + P(z, x)

is also consistent with this model.

There is an alternative way to justify (14) by focusing
on forward rate evolution deduced at (8), and to obtain
an insight into how the Monte-Carlo procedure is
implemented, we describe it next. From the definition of
S(x), we have S'(x)=o(x). Then it is easy to derive that
deterministic term }[S?(¢ 4+ x) — S(x)] is of the form

gi(1)e ™ + ga()xe ™ + g3()xTe > + Iy (e
+ I (f)xe ™2,

On the other hand, the explicit expansion of stochastic
term C(x)Z,,

Z! ! 1 —a? Z!
CeAx 12 ze—m[a ,3_ aa]I: +ax ax ] 12
Z; x l—ax]| Z;

=e ““(aZ} —aaZ; + BZ;)+xe ““(BZ, —aBZ}),
and the forward rate evolution becomes

r(x)=r"(x+1+ gl(l)e—2ax + gz(l)xe‘2ax + g3(l)x2€—2ax
+ (@) + ozZ,1 — aozth + ‘BZf)e—“x
+ (ho(t) + BZ} — aBZ})xe . (15)

From (15) we see that a family that is invariant under
time translation is consistent with the model if and only
if it contains the linear space {e ™, xe ™, e 2",
xe 2% x% 2%}, Consequently, to make a consistent
version of a translation invariant family ¢(z,x) it is
sufficient to add G,,(z, x).

The following concluding remarks concerning the

families used throughout this work should now be clear.

e The Nelson—Siegel family (henceforth NS)
Gns(z,X) = 21 + 207 4 zzxe ™™

is not consistent with the model.
e The family

Gu(z,x) = (21 + 22X)e™ " + (23 + z4x + z5x ) >

is the lowest dimension family consistent with
the model (hereafter MC).
e The family

Gans(2,X) =21 4+ 226" 4 z3xe ™ 4 (24 + 25X + zgx 2 )e 24

is the simplest adjustment based on the
restricted NS family that allows model consis-
tency (hereafter ANS).

3. Calibration to market data approaches

The calibration procedures can be described formally as
follows. Let 6 be the vector (o, B, a) of parameter values

for the model under consideration. Assume that we have
time series observations of the implied volatilities, alB, of
N caps, with different ATM strikes, K;, and maturities 7;
with i=1,..., N (here N=7). Suppose that, at time 1=0,
we are also equipped with the discount function estima-
tion, D(x), and that the market participants translate
volatility quotes into cash quotes adopting the Black
framework. In doing so, they adopt the convention that
K; quantities must match forward swap rates of the
interest rate swaps (IRS) with the same reset periods as
the ith cap (these IRS start their cash flows at t = xy+ 7 as
the corresponding cap and have no cash value at 1=0):

D(t) — D(T;
=20 D0 (16)

T ijl D(x;)
where 7 is the length of the underlying caplets, and
x1=21,...,x,=T; Derivation of formula (16) can be

found, for example, in Bjork (2004, proposition 20.7, p.
313). Now, by inspection, it is clear that this market
convention means that K; depends on the yield curve
estimation. It allows us to denote market prices of caps by
¢*(Ti, D(x), Ki(D(x)),08). This latter expression empha-
sizes the explicit and implicit dependence (through ATM
strikes) on discount function estimation even for market
prices. Let ¢(T;, D(x), K(D(x)), 0) be the corresponding
theoretical price under our particular model.

3.1. The two-step traditional method

First, we choose a non-consistent parametrized family
of forward rate curves G(z,x). Let D(z,x) be the
zero-coupon bond prices reported by G(z,x). Let Dy
be the corresponding discount factor observations
on maturities x; with k=1,...,M=11. For each zero-
coupon bond denoted by subscript k, the logarithmic
pricing errorf is written as follows

€x(z) = log D, — log D(z, xi).

Then, we have chosen in this work the sum of squared
pricing errors, SSE, as objective function to minimize
M
SSEp=min | log D* —log D(z,x)|*=min Y "e}(z). (17)
k=1
Now, via the least-squares estimators Z, an entire discount
factor estimation allows us to price the caps using market
practice or a HIM model. Following a similar scheme
for the derivatives fitting as that used at the bond side
we have

ei(0) = log ¢; —log ¢(6, Th)
and

N
— mi * 2 2
SSEC_mOm [log* —log(0, T)|| =min ;:l e (), (18)

where we have suppressed dependencies for simplicity.
Note that yield curve estimation is external to the model in
the sense that there is no need to know beforehand any of
the model parameters 6 for solving nonlinear program (17).

tRecall that, for small ¢, it is also the relative pricing error [Dj — D(z, xx)]/D(z, x).
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3.2. The joint calibration to cap and bond prices

Let us now describe in detail the joint cap—bond calibra-
tion procedure that makes sense in a consistent family
framework. We note that, in this situation, the para-
meters of the model are determined together with the
initial forward rate curve. This is different from the
traditional fitting of HIM models, where the two steps are
separate, as discussed before. From expression (14) we
note the dependency of the family on the parameter a.
Let G(z,x,a) be a family consistent with our model
(for instance, G,, and Gans) and define least-squares
estimators Z(a):

M
Z(a) = argmin Z(log Dy —log D(z, xy, ). (19)
T k=l
From the expression

Xk n,

log Dz xi.0) = = [ Glesna)ds = 3 My(@s,

0 =1
we note that, for consistent families and for a fixed a,
problem (19) is linear in z parameters (for the G,, family
n,=>5, and for the Gans family n,=6). Thus, Z is an
explicit and continuous function of a. With yield-curve
estimation implemented for every fixed «, the entire
discount function D(2(6), x, a) may be determined and it
may be envisaged that the estimates 6 have to be found by
solving the nonlinear program

SSEc = min || log {'[D(2(0))] — log ([D(2(0), 6, T)]Il*
N
= mein Z 81-2(9). (20)
i=1

However, following the latter program we are not sure
that the corresponding yield curve at the minimum 6,
D(E(é),x, é), was the optimal value of the sequence of
yield-curve estimations implicit in the program (20). In
other words, there exist reasonable doubts concerning the
convergence of this algorithm because both error mea-
sures compete, in general. Now, we consider the following
decomposition for the total loss function SSE(6):

SSEp(6) = || log D* — M(0)2(0)|°, 1)

SSEc(6) = [[log¢*[D(Z(0))] — log¢[D(E(6)),6, TP, (22)

Then, as a heuristic solution, we propose to modify the
latter program to include pricing residuals for the
discount through the convex combination

SSE, =min((1 = %) SSEp(8) + + SSEc(®).  (23)

for some fixed A €]0, 1].

At this point, note that the program used by Angelini
and Herzel (2002, 2005) in their work uses a different goal
attainment,

SSE = mein SSEc(0), (24)

where SSE~(0) and Z(a) are defined via the identities (20)
and (19). As a consequence, the program used by

=225
=23
& 235
)
=
@
w
S
® 24
=245F
25 . L . A " . : L .
10 20 30 40 50 60 70 80 90 100
iterate number, k
-4

log,, SSEp(8F)

(o} 20 40 60 80 100
iterate number, k

Figure 2. Convergence properties for the joint calibration
algorithm for the MC family. SSE- and SSEp contributions
to the total loss function. We present the mean of the path
iterates generated by 1000 uniformly distributed choices of the
initial seed, 6“.

these authors is a degenerate case of (23) with A fixed
equal to 1.

We test the robustness of this fitting algorithm for the
MC family using 1000 extractions from three independent
uniform distributions as initial guesses for the parameters,
0©. As representative input data, (D*, ¢¥), we use the
sample mean along the first 75 trading dates of the second
(excited) period under study. Figure 2 shows the sample
mean of the 1000 paths generated by the algorithm for
SSE(0"™) and the first contribution, SSEp(6®), depart-
ing from simulated 6. After the initial movements in the
wrong direction, the first contribution corrects its behav-
ior for finding its own minimum. Moreover, the second
contribution exhibits a correct minimization pattern.
Note the slightly better results on both sides with smaller
A. Similar results can be obtained with the ANS family
and other market scenarios.

4. Empirical results

We compare three different estimations of the initial yield
curve based on the Nelson—Siegel family, MC and ANS.
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Table 1. Discrete data for initial yield-curve estimation.

Maturity, x 0.25 1
Discount factor, D*(x) 0.9886 0.9538
Maturity, x 5 6
Discount factor, D*(x) 0.7693 0.7260

2 3 4

0.9069 0.8602 0.8142

7 8 9 10
0.6843 0.6445 0.6066 0.5706

Our first objective is to test the stability of the implicit
estimation of the model parameters 6. We consider the
mean, standard deviation and coefficient of variation of
parameter estimates time series. In this context the main
goal is to analyse the impact that an alternative interpo-
lation scheme has on the fitting capabilities of the model.
To this end, we use as measure the mean of the daily sum
of squared errors of derivatives log prices, hereafter
MSEc. The same measure is used for the zero-coupon
bond prices (we denote it by MSEp) and it is included in
the analysis with the market data.

The US data set consists of 150 daily observations
divided into two periods: the first period covers from 1/1/
2001 to 13/4/2001 (75 trading dates) and the second starts
in 15/3/2002 and finishes on 27/6/2002 (75 trading dates).
The Euro denominated set used for the analysis consists
of 100 daily observations from 15/2/2001 to 4/7/2001. We
point out that this Euro zone database is the same as that
used by Angelini and Herzel (2002, 2005). Like these
authors, we divide the sample into two subperiods, Period
1 and Period 2. Period 1 runs from the beginning to 19/4/
2001 (46 observations) and it is characterized by a
humped implied volatility term structure. Period 2 goes
from 20/4/2001 to the end (54 observations) and presents
a decreasing implied volatility. The data set is composed
of US and Euro discount factors for 13 maturities (3, 6
and 9 months and from 1 to 10 years) and of implied
volatilities of at-the-money interest rate caps with
maturities 1, 2, 3, 4, 5, 7 and 10 years. The data basis
is provided by Datastream Financial Service. The
simulated data was obtained from 360 extractions from
the model of bond and cap prices under identical
contractual features.

4.1. Simulations

We simulate, departing from alternative initial conditions
1*(x), the forward curve until the time ¢ attainable by this
model. We accomplished this by working out expression
(15), and writing the explicit formula for the stochastic
and the deterministic coefficients, which are actually
variable in time: the aforementioned g/7) and Z! and the
additional value coming from the initial curve translation,
1*(x +1). Now, it is possible to compute the prices of a set
of zero-coupon bonds using exact integration of r,(x) over
cross-sectional variable x at a fixed time ¢ and then the
prices of the seven caps with formula (9).

The fixed model parameters 6=(0.002, 0.007, 0.35)
were chosen. This particular choice has a similar order of
magnitude as the empirical estimations for this model
reported by Angelini and Herzel (2005). As alternative
initial curves, we choose MC, ANS and NS fitted to the
zero-coupon bond prices shown in table 1.

Table 2. Summary statistics for calibration results with simu-

lated data.
MC ANS NS
El: @) 0 0 0.23
ro(x) =17,(x) B 0 0 0.13
e(a) 0 0 8.7x 1072
Cy) 0 0 0.18
Cp 0 0 0.14
Cya) 0 0 9.7 x 1072
MSE 0 0 19%x1073
E2: elax) 025 0 0.28
ro(x) = rins(x)  €(B)  0.16 0 0.16
e(a) 0.12 0 9.5%x 1072
Cya) 38x1072 0 0.117
CyB) 39x1072 0 9.1x 1072
Cya) 32x1072 0 4.8 %1072
MSE 26x107* 0 6.7x107*
E3: &) 0.313 27x107%  0.18
ro(x) = rig(x)  e(B) 0.20 2.10x10~*  0.10
e(a) 0.16 1.6x107°  6.7x1072

Clo) 23x1072 14x107* 0.17
C(B) 2.6x1072 1.0x107™* 0.111
Cla) 22x1072 83x107° 63x1072
MSE 38x107* 39x107° 35x10°*

Sample statistics of the calibration on simulated data. Relative errors of
the parameter estimates are expressed in absolute value. We set to 0 the
table entries with value<10’- eps (variable eps ~ 107'® measures the
MATLAB internal accuracy).

Starting from the initial fitted curves, which may be
denoted # (x), rins(x) and r{g(x), and according to (8),
the corresponding three different model evolutions are
calibrated to MC, ANS and NS. In order to make the
calibration results more comparable, Monte-Carlo simu-
lations are built in from the identical random sequence
(Z!, Z?) in all three cases.

Following expression (8), it can be seen that there are
two consistent families, G,, and Gans, for the first
simulation EI, one, Gans, for the second simulation E2,
and none for the last simulation E3. Table 2 shows the
main consequences of the theory when the model is the
true model. Note that perfect calibration occurs, although
the model parameters are fixed « priori, when the family
used to perform calibrations is consistent with all the
future forward curves generated from the initial curve
r*(x). This explains, for instance, the bad performance of
the NS family even in experiment E3. Moreover, param-
eter instability and imprecision that produce an incorrect
yield-curve selection can also be checked in figure 3.

4.2. Real data

The objective of this section is to compare the perfor-
mance of the two different calibration approaches on two
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Figure 3. Daily estimates of parameters ¢ and « for data
simulated from the model with «=0.002 and ¢=0.35 and
starting forward curve ro(x) =ri\g(x). The straight line
corresponds to daily calibration results for the ANS family,
the irregular line for the MC family and the dashed line for the
NS family.

different periods of real trading dates. Thus, from now on
we will only consider the calibration results obtained with
the market data.

Concerning the US market, calibration with consistent
families is carried out by setting A =0.25 in program (23).
Table 3 shows the sample mean of the daily error fitting
measures, namely MSE- and MSEp, and the mean and
the coefficient of variation of parameter estimates.
Figure 4 shows in-sample fitting time series.

The two consistent families under study report better
in-sample fitting results when dealing with bond data.
However, for the derivatives calibration, only the ANS
family performs similar to the NS family in the two
periods. This may be due to the extra factor, z;, common
for the families Gans and Gns, which is independent of

Table 3. Summary statistics for calibration results with US
data for both periods.

MC ANS NS
Period 1 o 0.0078 0.0079 0.0081
B 0.0071 0.0067 0.0068
a 0.27 0.27 0.27
Cy(a) 0.17 0.13 0.12
Cy(B) 0.31 0.28 0.24
C\(a) 0.21 0.20 0.18
MSE- 82x107™%  62x107* 57x107*
MSE, 64x107° 1.1 x 107 14%107°
Period 2 o 0.0084 0.0076 0.0076
B 0.0089 0.0117 0.0114
a 0.30 0.39 0.37
Cy(a) 0.15 0.18 0.12
Cy(p) 0.18 0.24 0.18
Cy(a) 0.06 0.12 0.10
MSE-  0.0027 89x107* 29x107*
MSE, 58x10°° 1.Ix107%  23x107°

zero-coupon bond maturities and responsible for the
better fitting observed for these families for short-term
discount factors than the G,, family (note that this is not
incompatible with the better summary MSE) reported in
this sample by the minimal family when compared with
the Nelson—Siegel family).

Focusing on the the Euro market, we restrict ourselves
to a comparison of three different estimations of the
initial yield curve based on the minimal dimension family
which is consistent with the model analysed in this paper.
Table 4 compares the results reported by Angelini and
Herzel (2002, 2005) (left column) with two of the possible
extra outcomes that our extension may produce (cen-
tral and right columns). Recall that the objective function
of their work is a particular case of the extension
presented whenever the fixed parameter A is fixed to the
value 1.

As can be seen, the results for derivatives calibration
outperform those provided by the above authors in their
work. For estimation of the discount function, in-sample
mean statistics are marginally worse only in the second
period and preserve the same order of magnitude. Thus,
in both periods and for the same Euro database, we can
conclude that our proposed extension clearly improves on
the non-consistent methodologies that are traditionally
used by practitioners.t

5. Conclusions

When calibrating a HIM model, a TSIR curve choice to
fit a few market data observations is needed. In partic-
ular, it seems natural to use families of curves that do not
modify their structure under the future evolution of the
model, the so-called consistent families. In this work, we
chose three families of curves (two consistent families and
the popular Nelson—Siegel family) and we conclude that

TAt this point we note that our results for the Nelson and Siegel family are omitted for brevity, but they are very close to those
reported by Angelini and Herzel (2005) and are available upon request.
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Figure 4. In-sample fitting time series for the first period (left) and the second period (right) in the US market in logarithmic terms.
The thick line corresponds to the ANS family, the normal line to the MC family and the dashed line to the Nelson—Siegel family.

Table 4. In-sample mean statistics for calibration results with
Euro data in both periods.

r=1 2=0.25 2 =0.01

Period 1 MSE- 23x107™* 218x10™* 219x10~*
MSE, 88x1077 8.8x107’ 8.4 x 1077
Period 2 MSE-. 32x107* 27x107* 2.7x107*
MSE, 61x1077  7.0x 107’ 6.8 x 1077

this choice has an effective impact on the quality of
in-sample fitting as well as parameter estimates for both
simulated and US market data.

When using simulated data it is very clear that the
consistent families for experiments E1 and E2 perform
much better than the non-consistent families. Moreover,
the Nelson—Siegel family does not work even if it is
chosen as the starting yield curve (recall experiment E3).
These empirical facts constitute a nice demonstration of
the theory, in the sense that even in the absence of model
risk when only consistent families are used, perfect
calibration may occur.

Translation of these consequences to real data is less
clear, due to model risk and the quality of the data, but we
can infer the following concluding remarks. In this case,

the introduction of sufficiently rich consistent families,
MC and ANS, motivated theoretically by Bjork ez al.,
improves in-sample fitting capabilitiecs on bonds.
However, consistent families lead to somewhat stable
parameter estimates and worse in-sample derivatives
fitting results than the NS family. This may be because
consistent families may exhibit undesired asymptotic
features in different markets, and, in this sense, comple-
ment the empirical findings of Angelini and Herzel (2002,
2005) for different data sets like the US market data.
On the other hand, note that the extension to the
consistent calibration procedure presents more general
features. The extension to the first consistent calibration
approach is structured to allow for additional numerical
outcomes. According to the results reported for the Euro
database, this leads, in general, to better results also in
derivatives calibration compared with non-extended con-
sistent calibration and non-consistent methodologies.
Thus, comparative studies of the fitting of short-term
zero-coupon bond capabilities and its consequences for
cap pricing performance for several consistent families
with a particular model and for different market bases
(for instance, using different market inputs apart from US
or Euro market data) should be undertaken. Moreover,
we restrict our studies to a flexible one-factor Gaussian
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HIJM model. Future empirical research on the matter
should include multi-factor models in order to more
effectively capture the TSIR and TSV observed in the
market. Another theoretical point regards the analytical
study of the total loss function SSE,(6) and the conver-
gence properties of the joint calibration algorithm
proposed in this work.
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