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Chapter 1

A one- dimensional approach to a

forced relaxation oscillator

1.1 Introduction

In this chapter we describe the behavior of certain sets of solutions of an oscillator of the Van

der Pol type with sinusoidal forcing term. The original problem was proposed by Van der Pol

[33] in the study of an electrical circuit with a triode valve. Later on, Van der Pol and Van der

Mark [34] studied the forced relaxation oscillator in a circuit as the one in Figure 1.1.1. They

analyzed the frequency of the circuit as a function of the capacitance C. While increasing C from

its initial value they observed that the electrical system takes a period being a multiple of the

forcing period and that, for certain parameter values, two different subharmonics may coexist.

Furthermore, there are regions where no subharmonics are detected. Plotting the frequency of

the circuit against the capacitance they obtained a staircase structure as shown in Figure 1.1.2.

Recently, Kennedy, Krieg and Chua [22] working with a modern version of the Van der Pol

and Van der Mark’s circuit observed the appearance of secondary staircases. These staircases

present a well-known geometric structure called “the Devil’s staircase” (which, roughly speaking,

can be defined as the graph of a non-decreasing continuous map with the property that the

preimage of any rational number is a closed interval and the preimage of any irrational number

is a point). These secondary staircases give the route from the non-chaotic behavior to the

chaotic one in the electrical circuit.

The first mathematical investigation on this model was made by Cartwright and Littlewood

3
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Figure 1.1.1: The circuit studied by Van der Pol and Van der Mark.

Figure 1.1.2: The original staircase.
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[8]. They studied the solutions of the following non-linear differential equation

d2x

dt
+ ν(x2 − 1)

dx

dt
+ x = νb(ν)k cos kt, (1.1.1)

where ν >> 1 and discovered a family of solutions with chaotic behavior. Later on Levinson

[32] proposed the following version of (1.1.1)

ǫẍ + Ψ0(x)ẋ + ǫx = bp0(t), (1.1.2)

where Ψ0 = sgn(x2 − 1), p0(t) = sgn(sin(2πt
T )), ǫ > 0 is a small parameter and b varies in some

finite interval [b1, b2]. In this new model the solutions could be analyzed explicitly by piecing

together solutions at different linearity intervals.

Afterwards, Levi [30] modified the Levinson’s model by replacing the functions Ψ0(x) and

p0(t) by two differentiable C0− close functions. Namely, Ψ(x) negative for |x| < 1 and positive

for |x| < 1 and p(t) periodic of period T . In a very complicated process Levi reduced the study

of the qualitative behavior of the solutions of this model to the study of the dynamics of a

dissipative diffeomorphism in a region of R2 that, after identifying the upper boundary with the

lower one, can be considered as a dissipative diffeomorphism of an annulus into itself. Moreover

this diffeomorphism can be approximated (in some sense) by a circle map.

By using these techniques Levi showed that, for ǫ small enough, the interval [b1, b2] can be

decomposed into union of alternating closed, proper disjoint intervals Ak and Bk separated by

thin gaps gk and ĝk as follows:

[b1, b2] = A1 ∪ g1 ∪ B1 ∪ ĝ1 ∪ A2 ∪ g2∪, . . . ,∪ĝn−1 ∪ An ∪ gn ∪ Bn.

When b belongs to one of the intervals Ak a periodic solution of period (2q−1)T appears, where

T is the period of the forcing term p(t) and q = q(k) > 0 is an integer number. As b increases

it crosses one of the small gaps gk to fall down in one of the intervals Bk. Then, the above

periodic solution is preserved and another one of period (2q + 1)T is created. Moreover, it is

shown that in the intervals Bk the system exhibits chaotic motion. Afterwards, the parameter

b crosses another small gap of type ĝk to arrive to an interval Ak+1 where only the periodic

solution of period (2q + 1)T remains and the chaotic motion disappears. Thus, as b moves
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trough the intervals Ak, gk, Bk, ĝk and Ak+1 one observes a hysteresis phenomenon (frequency

demultiplication). However, Levi did not study in detail the evolution of the system as b crosses

the intervals gk and ĝk but he predicted the existence of orbits of very high period.

The purpose of the present chapter is to analyze the bifurcations occurring when the param-

eter b crosses the gaps of type gk and ĝk in the Levi’s model of the forced relaxation oscillator.

Before stating the main result of this chapter we have to introduce some notation and explain

Levi’s results with more detail.

1.2 The Levi’s model and statement of the main result.

Levi’s model can be conveniently rewritten as

ẋ =
1

ǫ
(y − Φ(x)), ẏ = ǫx + bp(t), (1.2.3)

where y = ǫẋ + Φ(x) is the modified velocity and Φ(x) =
∫ x
0 Ψ(u)du.

We shall denote by Pb be the Poincaré map associated to (1.2.3), defined as Pb(z) = Z(T, 0, z),

where Z(t, t0, z) denotes the solution of the system at time t which starts at z at time t0. For ǫ

small enough and for all b ∈ [b1, b2], the map Pb has the following geometrical properties:

(1) It has exactly two fixed points. One at infinity, and z0 which is close to the branch of

y = Φ(x) with negative slope.

(2) There exists an annular region R surrounding z0 with thickness less than
√

ǫ such that

any point z 6= z0 enters in R after sufficiently many iterations of Pb and stays there. In

particular R is Pb−invariant.

(3) The points of R ”circulate clockwise” with respect the point z0 under the iterates of Pb.

Let Π : R×[0, 1] −→ R be the natural projection. That is, Π|[0,2π)×[0,1] : [0, 2π)×[0, 1] −→ R
is a homeomorphism, Π is periodic of period 2π with respect to the first component and Π(x, y)

moves “clockwise” as x increases. Moreover, Π can be taken in such a way that if Π(x, y) = z

with x ∈ [0, 2π) and y ∈ [0, 1] then x is the “clockwise” angle of the vector z − z0 with respect

the horizontal line passing through z0. In what follows, we shall fix a lifting P̃b : R × [0, 1] −→
R × [0, 1] of the map Pb|R. That is, P̃b is a diffeomorphism such that Pb ◦ Π = Π ◦ P̃b. Let
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π1 : R× [0, 1] −→ R denote the projection map with respect to the first component. Take z ∈ R
and z̃ ∈ Π−1(z). Then, the real number

ρ
P̃b

(z) = lim
i→∞

π1(P̃
i
b (z̃)) − π1(z̃)

i

will be called the rotation number of z with respect to P̃b if it exists. We note that this limit is

the average angle by which the point z rotates under iteration of the map Pb with respect to

the fixed point z0 (see (3) above). Let Ω ⊂ R be a Pb−invariant set. The rotation set of Ω with

respect to P̃b is defined to be the set of all rotation numbers of all points from Ω with respect to

P̃b.

The following theorem summarizes Levi’s results on the system (1.2.3) (see [30]).

Theorem 1.2.1 The interval [b1, b2] can be decomposed into union of alternating closed, proper

disjoint intervals Ak and Bk separated by gaps gk and ĝk as follows:

[b1, b2] = A1 ∪ g1 ∪ B1 ∪ ĝ1 ∪ A2 ∪ g2∪, . . . ,∪ĝn−1 ∪ An ∪ gn ∪ Bn.

Moreover,

(a) For b in Ak we have:

(a.1) Pb has one pair of periodic points of period 2q − 1 where q = q(ǫ, k) ∼ 1/ǫ remains

constant through the interval Ak, and q(ǫ, k + 1) = q(ǫ, k) − 1, (i.e. the period of the

these points decreases as b increases).

(a.2) One of the two points is a sink and the other a saddle. Moreover, any point which

lies off the stable manifold of the saddle (except for the unstable fixed point of Pb)

tends to the sink under forward iterations.

(a.3) The rotation set of R is {2π/(2q − 1)}.

(b) For b in Bk, we have:

(b.1) The minimal attractor set of Pb is the union of a hyperbolic Cantor set and two pairs

of periodic points, one of these pairs has period 2q + 1 and the other one has period

2q−1. Each of these pairs consists on a sink and a saddle. Moreover, the two saddles

belong to the Cantor set.
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(b.2) The rotation set of R is [2π/(2q + 1), 2π/(2q − 1)].

(c) There exists b∗ in gk (respectively in ĝk) such that Pb∗ has a nondegenerate homoclinic

tangency. Moreover, there exists a small ξ > 0 and an open subset Bξ in B∗
ξ = [b∗, b∗ + ξ)

(respectively B∗
ξ = (b∗ − ξ, b∗])such that for b ∈ B∗

ξ \ Bξ, Pb is structurally stable. The set

B∗
ξ \Bξ consists on infinitely many components, to which there correspond infinitely many

different (structurally stable) types of Pb.

In order to complete statement (c) of Levi’s Theorem we study how the Cantor set appearing

in the statement (b) and its rotation set associated are formed when b crosses a bifurcation gap

gk or ĝk. This is achieved in the next theorem. We will only state the theorem in the case of

the interval gk. The situation for an interval ĝk is symmetric. In the rest of the chapter we will

use freely the notation introduced above and, in particular, the one from Theorem 1.2.1

Theorem 1.2.2 For each b ∈ gk the map Pb has one pair of periodic points of period 2q − 1;

a sink and a saddle. Moreover, there exist a countable sequence {bk
n}∞n=0 ⊂ gk satisfying the

following properties:

(a) For each bk
n the minimal attractor set of Pbk

n
contains an invariant hyperbolic Cantor set,

denoted by Ck
n, to which the saddle point belongs.

(b) For b ≥ bk
n, the minimal attractor set of Pb contains an invariant hyperbolic Cantor set,

denoted by Cn,k
b , which contains the saddle point of Pb, such that Pb|Cn,k

b

is topologically

conjugate to Pbk
n
|Ck

n
. Moreover, if bk

s < bk
n, then Cs,k

bk
n

⊂ Ck
n.

(c) For each bk
n there exists a rational number αk

n ∈ [−1, 1] such that for b ≥ bk
n the Pb−rotation

set of Cn,k
b is the closed interval [2π/(2q+αk

n), 2π/(2q−1)]. Moreover {αk
n}∞n=0 = (−1, 1]∩

Q.

In view of the above two theorems, the bifurcations of Pb when the parameter b crosses gk

from Ak to Bk can be explained in the following way. When b is close to Ak the dynamics

of the map Pb is the same as when b lies in Ak (see Theorem 1.2.1(a)). This is the situation

until b reaches the parameter value b∗ from Theorem 1.2.1(c). At this point the map Pb has

a non-degenerated homoclinic tangency and, in consequence, there exists a wild hyperbolic set

by the well-know result of Newhouse [26]. Therefore, all parameter values bk
n considered in
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Theorem 1.2.2 must be larger than or equals to b∗ and accumulate to b∗∗ ≥ b∗. Then, for

b ≥ b∗∗, the minimal attractor set of Pb contains an invariant hyperbolic Cantor set which

is enlarged each time that b crosses one of the parameter values from the sequence {bk
n}∞n=0

(see Theorem 1.2.2(a)–(b)). As it will be shown later, the dynamics of the system on each of

these Cantor sets can be deduced from a subshift of finite type with a certain transition matrix

which can be computed explicitly by using one dimensional techniques (see Corollary 1.4.5 and

Remark 1.4.6). Finally, when the parameter b is sufficiently close to Bk the dynamics of the

map Pb is the same as when b lies on Bk. Moreover, Pb possesses an invariant set, strictly

contained in the minimal attractor, with Pb−rotation interval [2π/(2q + 1), 2π/(2q − 1)] (see

Theorem 1.2.1(b) and [30]). The transition of the rotation interval of the system from the point

2π/(2q +1) into the interval [2π/(2q +1), 2π/(2q − 1)] is also described by the rotation intervals

of Pb restricted to the Cantor sets Cn,k
b (see Theorem 1.2.2(c)). The study of the Van der Pol

system will be based on the study of the bifurcations of a two parameter families of degree one

circle maps (see [4] and [?]). Due to the strongly one dimensional character of the Van der Pol

system we can transfer the information on the bifurcations, from the one dimensional models to

the two dimensional one.

This chapter is organized as follows. In the next section we shall summarize the Levi’s results

we are using. Then, in Section 1.4 we prove Theorem 1.2.2(a)-(b). To prove Theorem 1.2.2(c)

we shall summarize preliminary results about rotation intervals and twist orbits of circle maps

of degree one. This will be done in Sections 1.5 and 1.6. Afterwards, in Section 1.7 we prove

Theorem 1.2.2(c). In Section 1.8 we study the bifurcations of a simpler (piecewise differentiable)

version of Levi’s circle maps family defined in Section 1.3. This model already captures the

essential features of the Levi’s one and has the advantage that the study of its bifurcations can

be done in a more complete way than for the Levi’s circle map family. In particular, for these

maps we are able to characterize the appearance of Cantor sets when the parameter crosses the

interval gk. Finally, in Section 1.9 we give some cloncluding remarks.

1.3 Levi’s results

In this section, for completeness, we give a more precise description of the map Pb. Levi takes

a region W (see Figure 1.3.1) , which will be called ”the window”, bounded by the boundaries

of R, by a horizontal line l joining the boundaries of R and its image P (l).
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Figure 1.3.1: The window region W and its evolution.

The crucial property of W is that the iterates of any point z 6= z0 pass thought W, and

do so repeatedly. It suffices, therefore, to trace the evolution of W under Pb−iterations. The

description of this evolution plays a major role in the understanding of the dynamics of the

system; it is depicted in Figure 1.3.1 where the positions of W at different times are shown.

To determine the qualitative behavior of the map Pb we must determine how the future

iterates of the window W intersect W. To that end, we consider the window map Nb : W −→ W
defined by z −→ P j

b (z) where j = j(z) > 0 is the smallest integer for which P j
b (z) ∈ W. The only

piece of information we lose considering Nb instead of Pb is the integer-value function j(z). So we

will have to keep track of it. The advantage of looking at the window map Nb instead of Pb lies

in its simplicity. This simplicity is further enhanced by the symmetry properties of the damping

and forcing functions Φ(x) and p(t), which imply that the window map Nb is the second iterate

of the ”antipodal half-period” return map Mb : W −→ W defined as Mb(z) = −Z(mT + T
2 , 0, z),

where m = m(z) is the smallest integer for which −Z(mT + T
2 , 0, z) ∈ W. To see this we have

the following lemma due to Levi (see [30] and Figure 1.3.2).
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Figure 1.3.2: The evolution from the map Mb of a vertical line l ⊂ W.

Lemma 1.3.1 The map Nb is equal to Mb ◦ Mb. Moreover, there exists q > 0 such that

Mb(z) ∈ {−Z((2q + 1)
T

2
, 0, z),−Z((2q − 1)

T

2
, 0, z)}

for all z ∈ W.

Now, we give some of the notions used by Levi to prove Theorem 1.2.1.

Let A = S1 × [0, 1] be the standard annulus. The study of the map Pb can be reduced to the

study of the annulus map

Lb = L(., b, δ, δ1) : A −→ A,

depending on three parameters, namely, b ∈ [b1, b2], 0 < δ ≤ δ′ and 0 < δ1 ≤ δ′1, which satisfy

the following properties.

Let Π1 : A −→ S1 denote the vertical projection on the first component. For each σ ∈ [0, 1]

we denote by fb,σ(x) the circle map f(x, b, σ, δ, δ1) = Π1 ◦ Lb(x, σ) (see Figure 1.3.3). Then we

have:

(L.1) |fb,σ − fb,σ′ | < δ in the C0 norm in x, for all σ, σ′ ∈ [0, 1].
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Figure 1.3.3: The circle map fb,σ.

(L.2) There exist γ > 1, ϑ > 32, C > 0 and two intervals ∆ ⊂ ∆1 ⊂ S1 whose endpoints depend

on b, δ and δ1 (not on σ) such that |∆1| < δ1 and for all σ ∈ [0, 1] it follows:

(i) f ′
b,σ(x) > ϑγ for all x ∈ ∆.

(ii) −1 + C < f ′
b,σ(x) < −1/γ for all x ∈ S1 \ ∆1.

(L.3) The oscillation (in x) of fb,σ on each of the two components of ∆1 \∆ is less than ̺(δ, δ1),

which is independent on b and limδ,δ1→0 ̺(δ, δ1) = 0.

(L.4) For some σ ∈ [0, 1] we have − d
db(f(xi(b), b, σ, δ, δ1) − x′

i(b)) > ω(δ, δ1) > 0 for i = 1, 2,

where x1(b), x2(b), x′
1(b) and x′

2(b), are the endpoints of ∆ and ∆1 respectively (labelled

in such a way that ∆ = [x1(b), x2(b)] and ∆1 = [x′
1(b), x′

2(b)] ), all differentiable in b and

ω(δ, δ1) is independent on b (see Figure 1.3.3).

(L.5) Lb has a inverse on Lb(A).

(L.6) The map L−1
b in Q = ∆ × [0, 1] maps vertical strips into vertical strips.

The relation between Lb and Pb can be described as follows. There exists a homeomorphism

h from A into W such that Lb = h−1 ◦Mb ◦h. Then Lemma 1.3.1 gives the relation between the

map Pb of the phase plane of the system (1.2.3) into itself and the annulus map Lb. Moreover

there exists a positive integer m = m(ǫ) such that, for each Lb−invariant set Ω ⊂ A, we have

that ∪m
i=0P

i
b (h(Ω)) also is Pb−invariant. Then, the P̃b−rotation number of a point h(z) ∈ R
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with z ∈ A can be obtained from the Lb−rotation number of z as we shall show next (see

Remark 1.3.3). In a similar way as we did for the map Pb we shall fix a lifting L̃b of Lb to the

covering space R× [0, 1]. Then as usual, the L̃b−rotation number of a point z ∈ A is defined to

be the limit

ρ
L̃b

(z) = lim
i→∞

π1(L̃
i
b(z̃)) − π1(z̃)

i

if it exists, where z̃ is a point in R× [0, 1] projecting to z by the standard projection map (e, id)

with e(x) = exp(2πix). Let E(.) denotes the integer part function, then we note that this number

can also be computed as limi→∞(
∑i

j=1 db
j)/i, where db

j = E(π1(L̃
j
b(z̃))) − E(π1(L̃

j−1
b (z̃))).

In the sequel we denote max{δ′, δ′1} by δ. The following lemma is due to Levi [30].

Lemma 1.3.2 There exists a lifting L̃b of Lb such that, if δ is small enough, then for all

σ ∈ [0, 1] we have 1 + C < π1(z̃1(σ)) − π1(z̃2(σ)) < 2 − C where z̃i(σ) = L̃b((x̃i(b), σ)) for

i = 1, 2, x̃i(b) is such that e(x̃i(b)) = xi(b) for i = 1, 2 and |x̃1(b) − x̃2(b)| < 1. The constant

0 < C < 1 is independent on b, δ and δ1.

In the sequel we shall assume that the lifting L̃b of Lb we are working with is the one from

the statement of Lemma 1.3.2.

Remark 1.3.3 From the above lemma it follows that each map fb,σ has degree one and that

db
j ∈ {0, 1} for all b ∈ [b1, b2] and j ≥ 1. Now set τ(t) = 1 − 2t for t ∈ {0, 1}. From Levi [30]

it follows that if for some z ∈ A the L̃b−rotation number exists and δ is small enough, then

ρ
P̃b

(h(z)) = limi→∞ 2π/[2q + (
∑i

j=1 τ(db
j)/i)] = 2π/(2q + 1 − 2ρ

L̃b
(z)). 2

Next we characterize the intervals Ak, Bk, gk and ĝk in terms of the circle maps fb,σ. For

x, y ∈ S1 we denote by [x, y] (respectively (x, y), [x, y) and (x, y]) the closed (respectively open,

open from the right and open from the left) arc from x to y counterclockwise. Such an arc will

be called a closed (respectively open, open from the right and open from the left) interval of S1.

If A is a proper interval in S1 we also will use the notations inf A and supA in the obvious way.

Let ∆̃1 denote the open interval (x′
1(b) − ̺(δ, δ1), x

′
2(b) + ̺(δ, δ1)). Then, one and only one

of the following three cases occurs for fb,σ (see Figure 1.3.4):

Case A. The set f−1
b,σ (∆̃1)∩∆ is an interval such that its endpoints map onto the endpoints of

∆̃1 and its image is ∆̃1.
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Figure 1.3.4: The three cases for fb,σ(∆̃1).

Case g. fb,σ(xi) ∈ ∆̃1, for some i ∈ {1, 2} (i.e. the set f−1
b,σ (∆̃1) ∩ ∆ is a union of two disjoint

intervals such that the endpoints of one of them map onto the endpoints of ∆̃1 and the

image of the other one is strictly contained in ∆̃1).

Case B. The set f−1
b,σ (∆̃1) ∩ ∆ is a union of two disjoint intervals such that the endpoints of

both of them map onto the endpoints of ∆̃1 and their images are ∆̃1.

Let A, g and B be the sets of values of b ∈ [b1, b2] for which the corresponding alternative

holds. Then, since the endpoints of fb,σ(∆) move monotonically (clockwise) with respect to

the endpoints of ∆̃1 (see (L4)), the set A (respectively B and g) can be written as ∪k∈IA
Ak

(respectively ∪k∈IB
Bk and (∪k∈Iggk) ∪ (∪k∈Iĝ

ĝk)), where each of the sets Ak (respectively Bk,

gk and ĝk) is a connected component of A (respectively of B and g), in such a way that the

intervals Ak, Bk, gk and ĝk alternate as stated in Theorem 1.2.1.

1.4 Proof of Theorem 1.2.2(a)-(b)

To prove Theorem 1.2.2(a)–(b) we shall employ the techniques used by Levi in the proof of

Theorem 1.2.1(a)–(b) to translate the results concerning the circle maps family to the two
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x1(b) Ib,σ Ab,σ Jb,σ uσ(b)z

Kb,σ
n

Figure 1.4.5: The map fb,σ in ∆L
σ .

dimensional setting. Thus, we only will prove in detail the results on the family fb,σ which are

necessary to prove Theorem 1.2.2(a)–(b).

We start by constructing the sequence of parameter values appearing in the statement of the

theorem. First we have to fix some notation.

Note that for each b ∈ Ak ∪ gk there exist ub,σ ∈ Int(∆) depending continuously on b such

that ub,σ is a unstable fixed point of fb,σ (see Case A, Case g and Figure 1.3.4). Then, for

σ ∈ [0, 1], we define

αk
σ = sup{b ∈ gk : fb,σ(x1(b)) = ub,σ} and,

βk
σ = inf{b ∈ gk : fb,σ(x1(b)) = x′

1(b) − ̺(δ, δ1)}.

In view of (L4) we see that αk
σ < βk

σ .

In the sequel we shall denote the closed interval [x1(b), ub,σ] ⊂ ∆ by ∆L
σ . We note that for

b ∈ (αk
σ, βk

σ) we have that f−1
b,σ (∆L

σ )∩∆L
σ is the union of two closed disjoint intervals Ib,σ and Jb,σ

such that x1(b) ∈ Ib,σ, ub,σ ∈ Jb,σ, fb,σ(Jb,σ) = ∆L
σ and fb,σ(Ib,σ) ⊂ ∆L

σ (see Figure 1.4.5). Let

Ab,σ be the open interval ∆L
σ \ (Ib,σ ∪ Jb,σ). Observe that fb,σ(sup Ab,σ) = x1(b), fb,σ(inf Ab,σ) =

ub,σ and fb,σ(Ab,σ) = S1 \ ∆L
σ .
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Let

Wb,σ = {x ∈ ∆L
σ : f i

b,σ(x) ∈ Ab,σ for some i ∈ Z+} = ∪∞
i=0f

−i
b,σ(Ab,σ) ∩ ∆L

σ .

Lemma 1.4.1 For all σ ∈ [0, 1] and for all b ∈ (αk
σ, βk

σ) there exists {Kb,σ
i }∞i=1 ⊂ ∆L

σ , a count-

able sequence of open (in ∆L
σ) disjoint subintervals of ∆L

σ , such that Wb,σ = ∪∞
i=1K

b,σ
i

Proof. It uses a standard argument. Clearly, Wb,σ is open in ∆L
σ . Then, we only have to prove

that Wb,σ is dense in ∆L
σ . Suppose not. Then D = ∆L

σ \ Cl(Wb,σ) is a countable union of open

intervals (in ∆L
σ ). Number these intervals and let di be the length of the i−th one. Each di is

positive and
∑∞

i=1 di ≤ 1. So limi→∞ di = 0. Hence there is an i0 such that di ≤ di0 for all i.

Now, observe that fb,σ(D) ⊂ D and that the image of the i0−th interval of D by fb,σ is a larger

interval because f ′
b,σ|∆ > 1; a contradiction.

In the sequel we shall assume that the sequence {Kb,σ
i }∞i=1 is labelled in such a way that if

n < m, then supKb,σ
n ≤ inf Kb,σ

m . Note that the whole sequence depends on b and σ.

Now, set Kb,σ
0 = (x′

1(b) − ̺(δ, δ1), x1(b)). From (L4) we have that for each n ≥ 0 and for all

σ ∈ [0, 1] there exists bσ
n,k ∈ (αk

σ, βk
σ) such that fb,σ(Ib,σ) ∩ Kb,σ

n 6= ∅ for all b ≥ bσ
n,k and bσ

n,k is

the smallest one having this property.

In view of Lemma 1.4.1 and the definition of Wb,σ, for n > 0 there exists l = l(n) ∈ Z+ such

that f l
b,σ(Kb,σ

n ) = Ab,σ. Additionally, we set l(0) = 0. The following result will be crucial in the

proof of Theorem 1.2.2(a)–(b).

Proposition 1.4.2 Let n ≥ 0 and let b ∈ (bσ
n,k, β

k
σ). Then there exist a set Rb,σ

n,k such that

(a) Rb,σ
n,k is union of R1, . . . , Rl(n)+2, a finite sequence of closed disjoint intervals in ∆L

σ \Ab,σ

whose endpoints are preimages of x1(b) or ub,σ by fm
b,σ for some m ≥ 0.

(b) If fb,σ(x1(b)) ∈ Int(Kb,σ
n ), then the closed fb,σ−invariant set ∆L

σ \Wb,σ is strictly contained

in Rb,σ
n,k.

Proof. If n = 0 then the proposition holds trivially by taking R1 = Ib,σ and R2 = Jb,σ. Assume

n > 0. Clearly, there exists z ∈ (x1(b), inf Ab,σ) such that fb,σ(z) = supKb,σ
n (see Figure 1.4.5).

Observe that for all m such that 0 ≤ m < l(n), fm
b,σ(Kb,σ

n ) is an open interval (in ∆L
σ ) whose

endpoints map onto the endpoints of fm+1
b,σ (Kb,σ

n ). The complement of [x1(b), z)∪(∪l(n)
i=0f i

b,σ(Kb,σ
n ))



CHAPTER 1. A ONE-DIMENSIONAL APPROACH 17

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

x1(b) uσ(b)R̃1
� -

R1 R2
R̃2 = R3

Kb,σ
n

Kb,σ
m

Figure 1.4.6: The sets Rb,σ
n,k and Rb,σ

m,k

in ∆L
σ is union of l(n) + 2 closed pairwise disjoint intervals. Call them R1, . . . , Rl(n)+2. By

construction this sequence satisfies (a). Assume now that fb,σ(x1(b)) ∈ Int(Kb,σ
n ). Then the

complement of Rb,σ
n,k in ∆L

σ is strictly contained in Wb,σ. From this, statement (b) follows.

Remark 1.4.3 Let βk
σ > b > bσ

n,k > bσ
m,k. Then, Proposition 1.4.2 gives us two different

sequences of intervals. Namely, Rb,σ
n,k = ∪l(n)+2

i=1 Ri and Rb,σ
m,k = ∪l(m)+2

i=1 R̃i. From the construction

of the sets Rb,σ
n,k and Rb,σ

m,k (see Figure 1.4.6) it is not difficult to see that l(n) ≥ l(m) and that

there exist {k1, k2, . . . , kl(m)+2} ⊂ {1, 2, . . . , l(n) + 2} such that Ri ∩ fb,σ(Rj) 6= ∅ if and only if

R̃ki
∩ fb,σ(R̃kj

) 6= ∅ for i, j ∈ {1, 2, . . . , l(m) + 2}. 2

Now we are ready to define the sequence of parameter values appearing in the statement of

Theorem 1.2.2.

In the sequel we shall assume that δ is such that Proposition 1.4.2 holds.

In view of (L4), for δ > 0 small enough there exists ησ > 0 such that for all b ≥ bσ
n,k + ησ we

have fb,σ(Ib,σ) ∩ Kb,σ
n 6= ∅ for all σ ∈ [0, 1]. Then we define bk

n as supσ bσ
n,k + ησ.

Now, the proof of Theorem 1.2.2(a)-(b) follows directly from the following results.
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Proposition 1.4.4 Let b ∈ gk with b ≥ bk
n and let Rb,σ

n,k = ∪l(n)+2
i=1 Ri. Then for δ > 0 small

enough there exists a finite sequence V b
1 , . . . , V b

l(n)+2 of disjoint vertical strips contained in Q

such that V b
i ∩ Lb(V

b
j ) 6= ∅ if and only if Ri ∩ fb,σ(Rj) 6= ∅.

Proof. The Implicit Function Theorem implies that ub,σ is a smooth function in σ. First we claim

that for a fixed b, (ub,σ, σ) considered as function of σ is a vertical curve in Q. To prove the

claim, fix b and σ. From Case g we know that, if b ∈ gk, then there is a closed interval V 1
b,σ ⊂ ∆

such that ub,σ ∈ V 1
b,σ, fb,σ(V 1

b,σ) = ∆ and the endpoints of V 1
b,σ map onto the endpoints of ∆.

Now we set V i
b,σ = f−1

b,σ (V i−1
b,σ )∩ V 1

b,σ for all i ≥ 2. It easy to see that V i
b,σ ⊃ V i+1

b,σ and ub,σ ∈ V i
b,σ

for all i ≥ 1. From (L2)(i) it follows that the limit of the length of V i
b,σ as i tends to infinity is

zero. Then, ∩∞
i=1V

k
b,σ × {σ} = (ub,σ, σ). Now, set V i = ∪σ∈[0,1]V

i
b,σ × {σ} for all i ≥ 1. Clearly,

V i is a vertical strip and V i ⊃ V i+1 for all i ≥ 1. Moreover, the width of V i tends to zero as i

tends to infinity. Then, by a standard result (see for instance Guckenheimer and Holmes [16];

Lemma 5.2.1) we get that

V ∞ = ∩∞
i=1V

i = ∩∞
i=1[∪σ∈[0,1]V

i
b,σ × {σ}] = ∪σ∈[0,1][∩∞

i=1V
i
b,σ × {σ}] = ∪σ∈[0,1](ub,σ, σ)

is a vertical curve. This ends the proof of the claim.

Our next step will be the construction of the set of vertical strips. Assume that b ≥ bk
n.

Then Proposition 1.4.2 holds for all σ ∈ [0, 1] and f ′
b,σ 6= 0 on each interval Ri. Therefore, from

the Implicit Function Theorem we get that the endpoints of Ri are smooth functions in σ. Let

vb
i = ∪σ(inf Ri, σ) and wb

i = ∪σ(sup Ri, σ). Then, by the construction of the sets Ri, we have

that vb
i and wb

i are pre-images of the vertical curves (ub,σ, σ) and (x1(b), σ) under Lb (or Lm
b

for some m ≥ 0). Then by (L6) and by using the same techniques employed by Levi in the

proof of Theorem 1.2.1 (see [30] pp.76–86) we obtain the vertical character of vb
i and wb

i . Let

V b
i = [vb

i , w
b
i ]× [0, 1]. By construction we have V b

i ∩Lb(V
b
j ) 6= ∅ if and only if Ri∩fb,σ(Rj) 6= ∅.

Now, for each bk
n we define the (l(n) + 2) × (l(n) + 2)-matrix, T k

n = (tij) by tij = 1 if

V b
i ∩ Lb(V

b
j ) 6= ∅ and tij = 0 otherwise. Then, we denote by Σk

n the set of infinite sequences

a = (ai)
∞
i=−∞ such that ai ∈ {1, 2, . . . , l(n) + 2} and taiai+1 = 1 for all i ∈ Z. The next corollary

follows in the standard way (see Moser [37] pp.76 and Levi [30] pp.78).

Corollary 1.4.5 For b ≥ bk
n there exists an Lb-invariant hyperbolic Cantor set Sn,k

b , which

contains the saddle point of Lb, such that Lb|Sn,k

b

is topologically conjugate to the standard shift
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map on Σk
n. Moreover, for each z ∈ Sn,k

b there exists a unique a(z) ∈ Σk
n such that Li

b(z) ∈ V b
a−i

for all i ∈ Z.

Remark 1.4.6 We note that by Proposition 1.4.4 we can compute the transition matrix T k
n by

using the one dimensional map fb,σ and the construction of the set Rb,σ
n,k given in Proposition 1.4.2.

Moreover, from Remark 1.4.3 we obtain that if b > bk
n > bk

m then there exists an injective map

i : Σk
m −→ Σk

n which commutes with the standard shift maps on the spaces Σk
m and Σk

n (i.e. Σk
m

is a subsystem of Σk
n). 2

Proof of Theorem 1.2.2(a)-(b). Theorem 1.2.2(a) and the first assertion of Theorem 1.2.2(b)

follow immediately from Corollary 1.4.5 and the relation between the maps Lb and Pb. In

view of Remark 1.4.3 and the proof of Proposition 1.4.4 we obtain the second assertion of

Theorem 1.2.2(b) in a similar way.

1.5 The rotation interval

In the whole memoir we shall deal mainly with continuous circle maps. To study them it is useful

to use the equivalent framework of the liftings associated to the given circle map rather than

the circle map itself. The main advantages of this choice are that one is able to draw pictures

easily and that the points of the space have a total ordering. Then, it is easier to describe where

a point lies or which is the image of an interval. Now, we shall introduce the notion of a lifting.

We denote by e : R −→ S1 = {z ∈ C : |z| = 1} the natural projection e(x) = exp(2πix). A

continuous map F : R −→ R is called a lifting of a continuous map f : S1 −→ S1 if e◦F = f ◦ e

(such a map always exists; see Wall [39]). Therefore F (1) − F (0) is an integer independent of

x. This integer is called the degree of f , and is denoted by deg (f).

In this memoir we concentrate on the circle maps f of degree one. Thus we will denote by

L the class of all liftings of continuous maps of the circle into itself of degree one. That is L is

the class of all continuous maps F : R −→ R such that F (x + 1) = F (x) + 1. It is not difficult

to see that F (x + 1) − F (x) is an integer independent of x. This integer number is called the

degree of f.

In the next proposition we describe some of the basic properties of the liftings of circle maps

of degree one (see [2]). By F + k we shall denote the map defined by (F + k)(x) = F (x) + k.
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Proposition 1.5.1 Let f be a circle map of degree one and let F be a lifting of f . Then the

following statements hold.

(a) The map G is a lifting of f if and only if G = F + k for some integer k.

(b) Fn(x + k) = Fn(x) + k for all x ∈ R, k ∈ Z and n ≥ 0. In particular, Fn ∈ L for each

n ≥ 0.

(c) (F + k)n(x) = Fn(x) + nk for all x ∈ R, k ∈ Z and n ≥ 0.

We shall say that a point x ∈ R is periodic (mod. 1) of period q with rotation number p/q

for a map F ∈ L if F q(x) − x = p and F i(x) − x /∈ Z for i = 1, . . . , q − 1. A periodic (mod. 1)

point of period 1 will be called fixed (mod. 1). Clearly, if F is a lifting of f , then x is periodic

(mod. 1) for F if and only if e(x) is periodic for f and their periods are equal.

We advise to the reader that most of the results we are quoting from other authors will be

written in terms of class L unlike the original versions are stated for circle maps of degree one.

The notion of rotation number was introduced by Poincaré [38] for homeomorphisms of the

circle of degree one. This notion will be used to characterize the set of periods of circle maps of

degree one. The following Theorem is due to Poincaré (see [38]).

Theorem 1.5.2 Let F ∈ L be such that F is increasing. Then

lim
n→∞

Fn(x) − x

n

exists and it is independent of x.

Remark 1.5.3 Theorem 1.5.2 holds also for non-decreasing maps from L (see [37]). 2

From Theorem 1.5.2 and Remark 1.5.3 it follows that to every non-decreasing map F ∈ L
we can associate a real number ρ(F ) = limn→∞

F n(x)−x
n , which is called the rotation number of

F. Vaguely speaking, ρ(F ) is the average angular speed of any point moving around the circle

under iteration of the map. We note that ρ(F ) is a topological invariant of F. That is, if F and

G are topologically conjugate (i.e. there exists an increasing map h ∈ L such that F ◦h = h◦G)

then ρ(F ) = ρ(G). Poincaré also proved that F has a periodic orbit if and only if ρ(F ) ∈ Q.
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We remark that for a general map F ∈ L, limn→∞
F n(x)−x

n may not exist and if it exists it

may depend on the choice of the point x. This motivates the following extension of this notion

due to Newhouse, Palis and Takens (see [28]) to each map F ∈ L. For F ∈ L and x ∈ R we set

ρF (x) = ρ(x) = lim sup
n→∞

Fn(x) − x

n
.

The following Proposition follows from [2].

Proposition 1.5.4 Let F ∈ L and x ∈ R. Then the following hold.

(a) ρF+k(x) = ρF (x) + k for all k ∈ Z

(b) ρF m(x) = mρF (x).

(c) If x ∈ R and k ∈ Z, then ρF (x) = ρF (x + k).

(c) If x is a periodic (mod. 1) point of F with rotation number p/q, then ρF (x) = p/q

We denote by RF the set of all rotation numbers of F. Ito (see [18]) proved the following

result about the set RF .

Theorem 1.5.5 RF is a closed interval of the real line, perhaps degenerated to a single point.

In view of Theorem 1.5.5 the set RF will be called the rotation interval of F. Also, for an

F−invariant set Λ ⊂ R (i.e. F (Λ) ⊂ Λ) we set RF (Λ) = {ρF (x) : x ∈ Λ}. Notice that in general

RF (Λ) need not be neither closed nor connected.

1.6 Twist orbits

When looking at periodic points of circle maps sometimes it is useful to look at the set of all

iterates of the point under consideration. In our framework this means that we have to look at

the set of all points projecting on the iterates of the periodic point under consideration. This

motivates the following definition.

Let F ∈ L and let x ∈ R. Then the set {y ∈ R : y = Fn(x)(mod. 1) for n = 0, 1, . . .} will

be called the (mod. 1) orbit of x by F. Clearly, if F is a lifting of f , P is a (mod. 1) orbit of F,

and x ∈ P then P = e−1({fn(e(x)) : n ≥ 0}). We stress the fact that if P is a (mod. 1) orbit

and x ∈ P, then x + k ∈ P for all k ∈ Z.
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It is not difficult to prove that each point from an orbit (mod. 1) P has the same rotation

number. Thus, we can speak about the rotation number of P.

If x is a periodic (mod. 1) point of F of period q with rotation number p
q then its (mod. 1)

orbit is called a periodic (mod. 1) orbit of F of period q with rotation number p
q . If P is a (mod.

1) orbit of F we denote by Pi the set P ∩ [i, i + 1) for all i ∈ Z. Obviously Pi = i + P0. We note

that if P is a periodic (mod. 1) orbit of F with period q, then Card(Pi) = q for all i ∈ Z.

Let P be a (mod. 1) orbit of a map F ∈ L. We say that P is a twist orbit if F restricted to

P is increasing. If a periodic (mod. 1) orbit is twist then we say that P is a twist periodic orbit

(from now on TPO). The following result gives a geometrical interpretation of a TPO.

Lemma 1.6.1 Let P = {. . . , x−2, x−1, x0, x1, x2, . . .} be a TPO with period q and rotation num-

ber p/q and assume that xi < xj if and only if i < j. Then (p, q) = 1 and F (xi) = xi+p.

The following result generalizes Theorem 1.5.2 to twist orbits.

Remark 1.6.2 We note that if P is a twist orbit then the rotation number of P can be computed

by limn→∞
F n(x)−x

n for each x ∈ P. 2

In [10] the following result is proved.

Lemma 1.6.3 Let F ∈ L. For all a ∈ RF there exists a twist orbit P of F with rotation number

a. Moreover P is contained in a union of closed intervals in which F is increasing.

For a map F ∈ L we define maps Fl and Fr by (see [29], [3] and [10])

Fr(x) = sup{F (y) : y ≤ x},

Fl(x) = inf{F (y) : y ≥ x}.

Proposition 1.6.4 The maps Fr, Fl belong to L and are non-decreasing.

The map Fr may be characterized as the smallest non-decreasing map in L greater or equal

than F. Similarly Fl may be characterized as the largest non-decreasing map less or equal than

F (see Figure 1.6.7). It is easy to see that Fl and Fr coincide if F is non-decreasing. Otherwise

there exists intervals on which Fr is constant and strictly greater than F and there exists intervals



CHAPTER 1. A ONE-DIMENSIONAL APPROACH 23

Figure 1.6.7: The maps Fl and Fr.

on which Fl is constant and strictly smaller than F. Since Fr and Fl are non-decreasing, from

Theorem 1.5.2 they have unique rotation number. Thus, the numbers

a−(F ) = limi→∞
1
i (F

i
l (X) − X),

a+(F ) = limi→∞
1
i (F

i
r(X) − X),

are well defined. The next lemma shows the relation between the rotation numbers of Fr, Fl and

the rotation interval of F. The proof is due to Misiurewicz (see [?]).

Lemma 1.6.5 For a map F ∈ L we have RF = [a−(F ), a+(F )].

1.7 Proof of Theorem 1.2.2(c)

Prior to start the proof of Theorem 1.2.2(c) we have to introduce some notation and state some

preliminary results. In the sequel we shall denote the fb,σ−invariant set ∆L
σ \ Wb,σ by Λb,σ.
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Proposition 1.7.1 Let b ≥ bk
n, b ∈ gk. Then for each σ ∈ [0, 1] there exists an open interval

In,k
σ ⊂ (αk

σ, βk
σ) satisfying that for all c ∈ In,k

σ there exists a homeomorphism φσ : Sn,k
b −→ Λc,σ

(here we use the notation from Corollary 1.4.5) such that φσ ◦ Lb = fc,σ ◦ φσ.

Proof. Recall that for each σ ∈ [0, 1] there exists bσ
n,k such that fbσ

n,k
,σ(x1(b

σ
n,k)) = sup(K

bσ
n,k

,σ
n ).

Then there exists κσ > 0 such that for all c ∈ In,k
σ = (bσ

n,k, b
σ
n,k + κσ) we have that fc,σ(x1(c)) ∈

Int(Kc,σ
n ). Let Rc,σ

n,k = ∪l(n)+2
i=1 Ri be the sequence of intervals constructed in Proposition 1.4.2.

Take z ∈ Sk,l
b . Then, by Corollary 1.4.5, there exists unique a(z) ∈ Σk

n such that Li
b(z) ∈ Va−i

for all i ≥ 0. We recall that Va−i
= ∪σ(Ra−i

× {σ}) and Lb(Va−i
) ∩ Va−i−1 6= ∅ if and only if

fb,σ(Ra−i
) ∩ Ra−i−1 6= ∅ (see Proposition 1.4.4). Now, for i > 0 we define the set Ra−i...a0 as

Ra−i+1...a0∩f−i
b,σ(Ra−i

). By Proposition 1.4.4 we have that Ra−i...a0 6= ∅ and Ra−i−1...a0 ⊂ Ra−i...a0 .

Moreover, for each i > 0, the set Ra−i...a0 is a closed interval in ∆L
σ and the diameter of Ra−i...a0

is smaller than or equal to (ϑγ)−i because f ′
b,σ|∆ > ϑγ > 1. Therefore, ∩∞

i=0Ra−i...a0 contains a

unique point x(z, σ) ∈ Ra0 , such that f i
b,σ(x(z, σ)) ∈ Ra−i

for all i ≥ 0. Hence, {x(z, σ) : z ∈
Sk,l

b } ⊂ Λc,σ. Moreover, from Proposition 1.4.2(b) it follows that {x(z, σ) : z ∈ Sk,l
b } = Λc,σ.

Lastly, the map φσ(z) = x(z, σ) is a homeomorphism.

From the above proposition and its proof we have that the twist periodic orbits of period s

and rotation number r/s of the map fc,σ in Λc,σ for c ∈ In,k
σ correspond to (r/s)−Birkhoff orbits

of the annulus map Lb in Sn,k
b (see [21]).

In what follows we shall fix a lifting Fb,σ of the circle map fb,σ by setting Fb,σ = π1 ◦ L̃b

(where π1 and L̃b are defined in Section 1.2 and 1.3, respectively). Then from Proposition 1.7.1

we obtain inmediately the following result.

Corollary 1.7.2 Let z ∈ Sn,k
b . Then for all c ∈ In,k

σ we have that ρ
L̃b

(z) = ρFc,σ(Z), if it exists,

where Z ∈ e−1(φσ(z)).

In view of the above corollary we see that the computation of the rotation set of Sn,k
b

reduces to the computation of the rotation set of Fb,σ|e−1(Λb,σ). Unfortunately, this rotation set

is different from the rotation interval of Fb,σ . However, from the family fb,σ, it is possible to

obtain a logistic family of circle maps of degree one such that they still have Λb,σ as invariant

set and the rotation interval of these maps coincides with the rotation set of e−1(Λb,σ). This is

achieved simply by modifying the maps fb,σ in such a way that they loose the differentiability
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Figure 1.7.8: The logistic family of circle maps

at the endpoints of ∆. To be more precise, we define hc = h(., c, δ) : S1 −→ S1 with c ∈ [b1, b2]

such that (see Figure 1.7.8):

(ALS1) hc depends continuously on c.

(ALS2) The map hc satisfies (L2) and (L4) with ∆ = ∆1.

This family of maps was used by Alsedà, Llibre and Serra [4] to study the bifurcations of

the Levi’s circle maps at the level of the set of periods.

In the rest of this section we shall use, for the family hc (and their liftings Hc), the notation

and definitions introduced in the preceding sections extended in the natural way.

From (ALS2) is easy to see that the unique hc−invariant set strictly contained in ∆ is

Λc,σ. Moreover, if c ∈ In,k
σ , then by Proposition 1.7.1 and Corollary 1.7.2 we have that the

L̃b−rotation set of Sn,k
b coincides with the Hc−rotation set of e−1(Λc,σ). We note that by a

change of variables, if necessary, we may assume that e(0) = x1(c) for each c ∈ [b1, b2]. Then

we denote by X2(c) the unique element of [0, 1) ∩ e−1(x2(c)). Let Λ̃c be the set of all (mod. 1)

orbits of Hc contained in e−1(∆).

The next result states that the Hc− rotation set of e−1(Λc,σ) coincides with RHc , which is

the property we are looking for. It follows from Theorem B of [29], the proof of Theorem 2 of
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[10] and the Theorem B of [5].

Theorem 1.7.3 For the maps Hc ∈ L we have:

(a) The maps c → a−(Hc) and c → a+(Hc) are continuous.

(b) Let a ∈ RHc . Then there exists a twist orbit of Hc with rotation number a contained in

e−1(∆). That is, RHc = RHc(Λ̃c).

(c) If a−(Hc) ∈ R \Q (respectively a+(Hc) ∈ R \ Q) then {Hn
c (0) : n ∈ Z+} ⊂ e−1(∆) and

lim
i→∞

1

i
H i

c(0) = a−(Hc)

(respectively {H i
c(X2(c)) : i ∈ Z+} ⊂ e−1(∆) and

lim
i→∞

1

i
(H i

c(X2(c)) − X2(c)) = a+(Hc) ).

The following two lemmas allow us to study the L̃b rotation set of Sn,k
b . Let Uc,σ be the

unique element of e−1(uc,σ) ∩ [0, 1).

Lemma 1.7.4 Let c ∈ In,k
σ . Then a+(Hc) = 1, a−(Hc) ∈ Q and the L̃b−rotation set of Sn,k

b is

equal to [a−(Hc), 1].

Proof. Without loss of generality we may assume that Hc(0) ∈ [0, 1). Since Hc|e−1(S1\∆) is

strictly decreasing we have that (Hc)r(X) = Hc(X2(c)) for all X ∈ [X2(c), 1]. By Lemma 1.3.2

and (ALS2) we see that (Hc)r(Uc,σ) = Uc,σ + 1. Therefore, a+(Hc) = 1.

We note that in the proof of Proposition 1.7.1 the definition of In,k
σ , the set Kc,σ

n and the

point x1(c) depend only on fc,σ|∆. Hence, in view of the definition of the family hc and since

c ∈ In,k
σ , it follows that hc(x1(c)) ∈ Int(Kc,σ

n ). On the other hand, since hc(Ac,σ) = S1 \ ∆L
σ

there exists j ≥ 0 such that Hj
c (0) ∈ e−1(S1 \ ∆L

σ ). Moreover, for each X ∈ e−1(∆ \ ∆L
σ ) there

exists some i ≥ 0 such that H i
c(X) ∈ e−1(S1 \∆) because Hc|e−1(∆\∆L

σ ) is strictly increasing and

Uc,σ is a unstable fixed (mod. 1) point of Hc. Therefore, Hj
c (0) ∈ e−1(S1 \ ∆) for some j ≥ 0.

Hence, from Theorem 1.7.3(c) we get that a−(Hc) ∈ Q.

From the construction made in Section 1.4 we see that the definition of ∆L
σ and Ac,σ depend

only on fc,σ|∆. Thus, e(Λ̃c) ⊂ ∆L
σ . Since fb,σ(Ac,σ) = S1 \ ∆L

σ , from (ALS2), we have that
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e(Λ̃c) = Λc,σ. So, from Corollary 1.7.2 and Theorem 1.7.3(b) it follows that the L̃b−rotation set

of Sn,k
b is [a−(Hc), 1].

Lemma 1.7.5 For each a ∈ [0, 1) there exists c ∈ (αk
σ, βk

σ ] such that a−(Hc) = a. Moreover,

for each c ∈ (αk
σ, βk

σ ] we have that a−(Hc) ∈ [0, 1).

Proof. From the definitions of αk
σ and βk

σ we have that for c ∈ (αk
σ, βk

σ ] we may assume, without

loss of generality, that Hc(0) ∈ (Uc,σ − 1, Uc,σ).

We recall that, for c ∈ (bσ
0,k, β

k
σ ] we have hc(x1(b)) ∈ S1 \∆L

σ . Then, Hc(0) < 0. Thus, there

exists Ũc,σ ∈ [0, Uc,σ] such that Hc(Ũc,σ) = Ũc,σ. We have that Hc(1) = Hc(0)+1 > Uc,σ ≥ Ũc,σ.

Therefore, by the definition of Hc we have (Hc)l(Ũc,σ) = Hc(Ũc,σ). So, a−(Hc) = 0.

Let c = αk
σ. Then, Hc(0) = Uc,σ. Clearly, (Hc)l(Uc,σ) = Hc(Uc,σ) = Uc,σ + 1. Thus,

a−(Hc) = 1. Then, in view of Theorem 1.7.3(a), the first statement of the lemma follows.

Since Hc(0) < Uc,σ it is not difficult to see that for c ∈
(
αk

σ, βk
σ

]
, (Hc)l(X) < X + 1 for all

X ∈ R (recall that Hc(Uc,σ)) ∈ {Uc,σ, Uc,σ + 1}). Hence a−(Hc) < 1.

Proof of Theorem 1.2.2(c). From Lemma 1.7.4 and Remark 1.3.3, we get that the P̃b−rotation

set of Cn,k
b for c ∈ In,k

σ is the closed interval [2π/(2q + 1 − 2a−(Hc)), 2π/(2q − 1)]. Then

Theorem 1.2.2(c) follows from Lemma 1.7.5.

1.8 The piecewise-monotone family of circle maps related to

the Van der Pol equation

In this section we shall study the bifurcations of a family hc of circle maps satisfying (ALS1)-

(ALS2) defined in the previous section. This is interesting because this model already captures

the essential features of the Levi’s one and has the advantage that the study of its bifurcations can

be done in a more complete way than for the Levi’s circle map family considered in Section 1.3.

In particular, for the maps hc we shall characterize the appearance of Cantor sets when the

parameter c crosses the interval gk. Moreover we shall see that these Cantor sets contain the

invariant sets Λc,σ.

We start this section by recalling the definition of the family hc. Indeed hc = h(., c, δ) be a

three parameter family of C0 maps of the circle into itself of degree one, with the parameters
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ranging in b1 ≤ c ≤ b2, 0 < δ ≤ δ, and satisfying that there exist γ> 1, ϑ > 1/γ, c > 0 and an

interval ∆ = [x1(c), x2(c)] ⊂ S1 such that x1(c), x2(c) depend on c and δ (differentiably on c),

|∆| < δ and

h′
c(x) > ϑγ for all x ∈ ∆ (1.8.4)

− 1 + c < h′
c(x) < −1/γ for all x ∈ S1 \ ∆ (1.8.5)

− d/db[hc(xi(c), c, δ) − xi(c)] > ω > 0, i = 1, 2 (1.8.6)

where ω = ω(δ) is independent of c (see Figure 1.7.8).

In [4] the following result is given. It characterizes the dynamics of hc for certain values of

c (compare with Theorem 1.2.1(a)–(b)).

Theorem 1.8.1 If the map hc satisfies (1.8.4)-(1.8.6) then for δ small enough the interval

[b1, b2] consist of two alternating types of intervals Ak, Bk separated by (short) gaps gk :

[b1, b2] = A1 ∪ g1 ∪ B1 ∪ g2 ∪ A2 ∪ g3∪, . . . ,∪An ∪ g2n−1 ∪ Bn,

such that:

(A) For c ∈ Ak the map hc has exactly two fixed points, one stable and another unstable.

Moreover, the basin of attraction of the stable fixed point is the whole circle except the

unstable fixed point.

(B) For c ∈ Bk the map hc has four fixed points, two stable and two unstable. Moreover, these

two unstable fixed points belong to a Cantor set C such that hc|C is topologically conjugated

to a certain subshift of finite type.

The goal of this section is to give a complete characterization of the bifurcations of this circle

maps family. The main result of this section is the following:

Theorem 1.8.2 Let gk = (gk,1, gk,2). For every gap gk there exist αk, βk such that gk,1 < αk ≤
βk < gk,2 and
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(a) If c ∈ gk, then hc has exactly two fixed points, one stable and another unstable.

(b) If c ∈ (gk,1, αk] then the basin of attraction of the stable fixed point is either the whole circle

except the unstable fixed point or the whole circle except the unstable fixed point union xi(b)

with i = 1 or 2.

(c) If c ∈ (βk, gk,2) then there exist a Cantor set C ( which depend on c), containing the

unstable fixed point and such that hc|C is topologically conjugate to a subshift of finite type.

Moreover, the basin of attraction of the stable fixed point is either the complementary of

the Cantor set C or the complementary of the Cantor set C union ∪∞
n=0h

−n
c (xi(c)) with

i = 1 or 2.

(d) If αk 6= βk then the interval (αk, βk] consists of two sets Dk, Ek such that (αk, βk] =

Dk ∪Ek, Ek (resp. Dk) is closed (resp. open) in (αk, βk] and if c belongs to Ek (resp. Dk)

then the dynamics of hc is analogous to the case c ∈ (gk,1, αk] (resp. c ∈ (βk, gk,2)).

We note that the above theorem characterize completely the minimal invariant sets for

all values of parameter c and gives the full picture of the bifurcations occurring in gk. This

characterization could not achieved in Theorem 1.2.2 for the Levi’s circle maps family because

of the differentiability of Levi’s circle maps family in ∆1 \ ∆.

The rest of the section will be devoted to prove Theorem 1.8.2.

From now one we will use lower case letters to denote points in S1 and for the corresponding

point in the covering space R we will use the corresponding upper case letter.

We recall that for the family hc only one of the following three cases can occur:

Case Ã. The set I = h−1
c (∆) ∩ ∆ is an interval, such that hc(I) = ∆ and the endpoints of I

map onto the endpoints of ∆.

Case g̃. hc(xi) ∈ Int∆, for i = 1 or 2 (i.e. the set I is a union of two disjoint intervals I1 and

I2 so that the endpoints I1 map onto the endpoints of ∆ and hc(I2) is strictly contained

in ∆).

Case B̃. The set I is a union of two disjoint intervals I1 and I2 so that the endpoints of each

Ii map onto the endpoints of ∆.

Call Ak, Bk, gk the maximal intervals of c for which the corresponding alternative holds.
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Since the endpoints of hc(∆) move monotonically (clockwise) with respect to the endpoints

of ∆ (see (1.8.6)) the intervals alternate as stated in Theorem 1.8.1.

We shall study the bifurcations when c crosses a gap g2k−1 from Ak to Bk (e.g. hc(x1(c)) ∈
Int (∆)). In a similar way, we may study them when b crosses a gap g2k from Bk−1 to Ak. We

describe these bifurcations in terms of symbolic dynamics. So we use the following definitions.

Let S = {1, 2, . . . ,m} and T = (ti,j) an m × m matrix such that ti,j ∈ {0, 1}. We denote by

ΣT the set of infinite sequences a = (ai)
∞
i=0 such that ai ∈ S and taiai+1 = 1 for all i ∈ Z, i ≥ 0.

We define the shift map σ : ΣT −→ ΣT by σ(a) = (ai)
∞
i=1. Then the set ΣT with the shift map

σ is called a subshift of finite type with transition matrix T. If ti,j = 1 for all i, j, then we call it

full shift on m symbols. The set ΣT has a metric defined by d(a,b) =
∑∞

i=0 γ(ai, bi)2
−i where

γ(a, b) =





0 if a = b

1 if a 6= b.

Then ΣT is a Hausdorff compact space.

Let hc ∈ C(S1,S1) and let Σ ⊂ S1 be an invariant set (i.e. hc(Σ) ⊂ Σ) we say that

hc|Σ is topologically conjugated to a subshift of finite type σ|ΣT
if there is a homeomorphism

hc : ΣT −→ Σ such that hc ◦ h = h ◦ σ.

Let hc be a continuous map of the circle into itself which satisfies (1.8.4)-(1.8.6). Assume

that c ∈ gk. We note that for c ∈ Ak ∪ gk, then f has exactly two fixed points one stable and

the other unstable (see Case Ã and Case g̃ ). From now one we denote by u(c) the unstable

fixed point of hc and by s(c) the stable fixed one. By the definition of the intervals Ak and gk

we have that s(c) ∈ S1 \ ∆ and u(c) ∈ Int (∆). Let W = {x ∈ S1 : limn→∞ hn
c (x) = s(c)} (i.e.

W is the basin of attraction of the stable fixed point).

Now, we will use a lifting Hc of the map hc, and so we have to fix our notation. Without

loss of generality we may assume that 0 ∈ e−1(x2(c)) (that is 0 is a local maximum of Hc).

Then ∆ denotes the interval e−1(∆) ∩ [0, 1]. Also, U(c) (resp. X1(c)) denotes the only element

of e−1(u(c)) ∩ ∆ (resp. e−1(x1(c)) ∩ ∆). Lastly, we choose the lifting Hc such that Hc(U(c)) =

U(c) + 1 (see Figure 1.8.9).

Also, we recall that if c ∈ gk then hc(x1(c)) ∈ Int (∆). The following lemma is not difficult

to prove (see Figure 1.8.10)

Lemma 1.8.3 The following statements hold.
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Figure 1.8.9: The lifting Hc.
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Figure 1.8.10: The map hc for c ∈ Ak.

(a) If Hc(X1(c)) > U(c) then, W = S1 \ {u(c)}.

(b) If Hc(X1(c)) = U(c) then, W = S1 \ {u(c), x1(c)}.

Remark 1.8.4 We note that the situation described in the Lemma 1.8.3(a) is similar to the

case when c ∈ Ak and persists in a small open interval contained in gk. 2

Lemma 1.8.5 If Hc(X1(c)) < U(c) then there are two points V (c), Q(c) such that 0 < Q(c) <

X1(c) < V (c) < U(c) and Hc(Q(c)) = Hc(V (c)) = U(c).

Proof. Observe that Hc(X1(c)) = infx∈[0,1] Hc(X). Since Hc|∆ is strictly increasing, u(c) is the

only fixed point in ∆ and Hc(U(c)) = U(c) + 1 we have Hc(1) > 2 (see Figure 1.8.9). Hence

Hc(0) > 1. By using the intermediate value theorem we find two points V (c) > X1(c) and

Q(c) < X1(c) such that Hc(V (c) = Hc(Q(c)) = U(c). Also, V (c) < U(c) because Hc|∆ is strictly

increasing.

Let q(c) = e(Q(c)), v(c) = e(V (c)) and I = [q(c), u(c)] (see Figure 1.8.11). Clearly

Hc([V (c), U(c)]) = [U(c), U(c) + 1]. Then there is a unique point R(c) ∈ (V (c), U(c)) such

that Hc(R(c)) = Q(c) + 1. Let r(c) = e(R(c)). So hc([r(c), u(c)]) = I.
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Figure 1.8.11: The interval [q(c), u(c)].

Observe that S1 \ I is contained in W and let A0 denote the interval (v(c), r(c)). Then the

following lemma follows from the fact that hc(A0) = S1\I and hc(I \A0) = I (see Figure 1.8.11).

Lemma 1.8.6 Let Hc(X1(c)) < U(c). Then, (S1 \I)∪A0 is contained in W. Moreover, W ∩I =

∪∞
i=0h

−i
c (A0).

We denote by WI the open (in I) set W ∩ I.

Proposition 1.8.7 W is a open dense set in S1.

Proof. From Lemma 1.8.6 we have that WI is open. Then the proposition will follow by showing

that WI is dense in I \ x1(c) (which is a minor variation of the proof of Lemma 1.4.1). Suppose

not. Then D = (I \ x1(c)) \ Cl(W ) is a countable union of open (in I) intervals. Number these

intervals and let di be the length of the i − th one. Then
∑∞

i=1 di ≤ 1 and each di is positive.

So limi→∞ di = 0. Hence there is a i0 with the property that di ≤ di0 for all i. By using that

hc(x1(c)) ∈ ∆ we have that if x ∈ (q(c), v(c)), then hc(x) ∈ (x1(c), u(c)). From (1.8.4) and

(1.8.5) we obtain that (h2
c)

′|D > ϑ > 1. Now observe that h2
c(D) ⊂ D and that h2

c restricted to

the i0 − th interval of D maps this interval to a larger interval because (h2
c)

′ > 1. But such an

interval can not be in D. This is the required contradiction.
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Let Σ = S1 \ W. Clearly, Σ = I \ WI .

Corollary 1.8.8 The set Σ is a closed totally disconnected invariant set.

Remark 1.8.9 For the family hc we can define the sets ∆L
σ = [x1(c), u(c)] and the hc−invariant

set Λh
c,σ ⊂ ∆, in a similar way as they were defined for the family fb,σ. To prove Theorem 1.2.2

we have used the dynamics of the family hc restricted to Λh
c,σ. However, already for hc which

is a one-dimensional model simpler than fb,σ we know that the dynamics is more rich. Indeed,

since ∆L
σ ⊂ I we have that Λh

c,σ is strictly contained in Σ which is an invariant set for hc.

The fact that we did not use the dynamics of hc in Σ \ Λh
c,σ tells us that still there are some

features of the general model that we have not been able to capture by using the one dimensional

approximation. 2

Next we use symbolic dynamics to describe the behavior of f in Σ. To do this we define

K1(c) = ∪∞
n=0h

−n
c (x1(c)).

Theorem 1.8.10 Let c ∈ gk such that Hc(X1(c)) < U(c). Then there is a sequence R1, . . . , Rm

with m = m(x1(c)) of closed pairwise disjoint intervals in I such that

(a) Σ ⊂ (∪m
i=1Ri)) ∪ {x1(c)}

(b) hc|Σ\K1(c) is topologically conjugate to σ|ΣT
, a subshift of finite type.

Proof. First of all we construct the sequence R1, . . . , Rm. By Proposition 1.8.7 there exists V,

a connected component of WI such that hc(x1(c)) ∈ Cl(V) and hc((q(c), v(c)) ∩ V 6= ∅ and let

V ′ = (y, z) be such that hc(y) = hc(z) = supV (see Figure 1.8.12). Note that x1(c) ∈ V ′ and, if

x1(c) ∈ WI , then V ′ is a connected component of WI . Otherwise V ′ is x1(c) union two connected

components of WI . Clearly, there exists a non-negative integer l such that hl
c(V) = A0 (recall that

WI = ∪∞
i=0h

−i
c (A0). Observe that for all n such that 0 ≤ n ≤ l, hn

c (V) is an open interval and the

endpoints of hn
c (V) map onto the endpoints of hn+1

c (V). Moreover, V ′∪V∪hc(V)∪, . . . ,∪hl
c(V) ⊂

WI ∪ {x1(c)}.
The complement of V ′ ∪ V ∪ hc(V)∪, . . . ,∪hl

c(V) in I is union of a finite sequence of closed

pairwise disjoint intervals. Call them R1, . . . , Rm. Let R = ∪m
i=1Ri. Clearly, Σ ⊂ R ∪ {x1(c)}

and statement (a) is proved.
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Figure 1.8.12: The intervals V and V ′.

The map f is monotonic on each of the closed intervals Ri and we have that h−1
c (R) ⊂ R.

Moreover, for all i, j the set Ri ∩ h−1
c (Rj) has at most one connected component. Define the

m × m matrix T = (ti,j) by ti,j = 1 if Ri ∩ h−1
c (Rj) 6= ∅ and ti,j = 0 if Ri ∩ h−1

c (Rj) = ∅. Let

(ΣT , σ) be the subshift of finite type with transition matrix T . Now, statement (c) follows in

the standard way (see [?]).

Corollary 1.8.11 Let x1(c) ∈ WI . Then there is a sequence R1, . . . , Rm with m = m(x1(c)) of

closed pairwise disjoint intervals in I such that

(a) Σ ⊂ (∪m
i=1Ri)

(b) hc|Σ is topologically conjugate to σ|ΣT
, a subshift of finite type.

Proof. It follows from the fact that K1(c) ⊂ WI and, hence, Σ ∩ K1(c) = ∅.

Finally, we are ready to prove Theorem 1.8.2.

Proof of Theorem 1.8.2. From Case g̃ it follows immediately statement (a) (see also Figure 1.7.8).

Let αk = inf{b ∈ Ak∪gk : Hc(X1(c) = U(c)}. Since Hc(X1(c)) > U(c) for b ∈ Ak and u(c) ∈ Int∆



CHAPTER 1. A ONE-DIMENSIONAL APPROACH 36

we have αk ∈ gk. From Lemma 1.8.3 it follows statement (c). Let βk = sup{b ∈ Ak ∪ gk :

Hc(X1(c)) = U(c)}. Clearly, αk ≤ βk. From Theorem 1.8.10 and Corollary 1.8.11 it follows

statement (b). If αk 6= βk, set Ek = {b ∈ (αk, βk] : Hc(X1(c)) ≥ U(c)}. Since Hc(X1(c)) − U(c)

depends continuously on b we have that Ek is closed in (αk, βk]. From statements (b) and (c) it

follows (d).

1.9 Concluding Remarks

In view of the results given in the previous sections we can conclude that only a small part of

the information gotten in the study of the one dimensional system can be taken satisfactorily

to the two dimensional one.

On the other hand we would have desired to get the following result: For each bk
n the map

Pbk
n

has one pair of periodic points of period 2q + αk
n a sink and a saddle. We note that if the

above result were true then, from Theorem 1.2.2 the map Pbk
n

would have two pairs of periodic

points, one of these pairs has period 2q−1 and the other has period 2q +αk
n. Each of these pairs

consist on a sink and a saddle.

From Theorem 1.2.2 we get the existence of the saddle point but, unfortunately, we cannot

guarantee the existence of the corresponding sink. Namely, we used the piecewise linear model

in the proof of Theorem 1.2.2 but Theorem 1.8.2 tells us that for c ∈ gk the family hc does not

have any sink in Σ. We believe that if one wants to prove the existence of these attractors one

has to use, essentially, two dimensional techniques.



Chapter 2

The characterization of the

kneading pair for a class of circle

maps

2.1 Introduction

The goal of this chapter is to characterize a set of symbolic sequences which is the equivalent

at a symbolic level of the class A of maps which are liftings of degree one circle maps with a

single maximum and a single minimum. The study of these maps arise naturally in different

contexts in dynamical systems. For instance, a three parameter family of maps from A has

been introduced by Levi [30] and used in Chapter 1 to study the Van der Pol equation. On the

other hand, the standard maps family defined as Fb,w(x) = x + w + b
sin(2πx)

2π
where x,w ∈ R

and b ∈ (0,∞) belongs to the class A for all b > 1. The study of this two parameter family

displays a correspondence with periodically forced chick-heart cells (see [12]) and the plot of the

phase-locking zones as a function of b and w gives the Arnold tongues (see [7]). Also, the class

A is relevant in the description of the transition to chaos for contracting annulus maps.

We shall use the extension of the Kneading Theory of Milnor and Thurston [20] given by

Alsedà and Mañosas [5] to maps from A. The key point of this Kneading Theory is a suitable

definition of itinerary. With this notion they extended some basics results of the kneading theory

for unimodal maps to the class A. Moreover, they showed that for a map from class A, the set

37
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Figure 2.1.1: An example of a map F from class A.

of itineraries of all points can be characterized by the kneading pair; that is, the itinerary of the

maximum and of the minimum. Thus, in the study of bifurcations of parametrized families in A
this two sequences play a crucial role. This is our motivation to characterize the set of kneading

pairs of maps from A. This will be done in the main result of this chapter.

Now, we introduce the class A of maps we study (see Figure 2.1.1). We say that F ∈ A if:

(1) F ∈ L (that is, F (x + 1) = F (x) + 1 for all x ∈ R),

(2) There exists c
F
∈ (0, 1) such that F is strictly increasing in [0, c

F
] and strictly decreasing

in [c
F
, 1] .

We note that every map F ∈ A has a unique local maximum and a unique local minimum in

[0, 1) . To define the class A we restricted ourselves to the case in which F has the minimum at

0. Since each map from L is conjugated by a translation to a map from L having the minimum

at 0, the fact that in (2) we fix that F has a minimum in 0 is not restrictive.

The chapter is organized as follows. In Section 2.2 we give a survey of the kneading theory

developed by Alsedà and Mañosas [5]. In Section 2.3 we state and prove the main result of this
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chapter. Finally, in Section2.4 we make some concluding remarks.

2.2 A survey on the Kneading Theory for circle maps

We start by introducing some notation. In what follows we shall denote the integer part function

by E(·). For x ∈ R we set D(x) = x − E(x). For F ∈ A we define the height of F , as

p
F

=





E(F (c
F
)) − E(F (0)) if F (c

F
) /∈ Z,

E(F (c
F
)) − E(F (0)) − 1 if F (c

F
) ∈ Z.

If A ⊂ R and x ∈ R, we shall write x+A or A+x to denote the set {x+a : a ∈ A}. Also, if

B ⊂ R we shall write A + B to denote the set {a + b : a ∈ A, b ∈ B}. Let F ∈ A be with height

p. Then the points of the set ∆(F ) = Z ∪ F−1(Z) ∪ c
F

+ Z will be called the turning points of

F. We note that if x ∈ ∆(F ) then x + Z ⊂ ∆(F ).

Now, we define the notion of address we are going to use. For F ∈ A and x ∈ R let

s(x) =





R if D(x) > cF ,

C if D(x) = cF ,

L if D(x) ∈ (0, cF ),

M if D(x) = 0,

and d(x) = E(F (x)) − E(x).

Now, we define the reduced itinerary of x, denoted by Î
F
(x), as follows. For i ∈ N, set

si = s(F i(x)) and di = d(F i−1(x)). Then Î
F
(x) is defined by





ds1
1 ds2

2 . . . if si ∈ {L,R} for all i ≥ 1,

ds1
1 ds2

2 . . . dsn
n if sn ∈ {M,C} and si ∈ {L,R} for all i ∈ {1, . . . , n − 1}.

Since F ∈ L we have that ÎF (x) = ÎF (x + k) for all k ∈ Z.

Let x, y ∈ R be such that D(x) 6= D(y). We say that x and y are conjugate if and only

if F (D(x)) = F (D(y)). Note that if x and y are conjugate then they have the same reduced

itinerary.

Let S = {M,L,C,R} and let α = α0α1 . . . be a sequence of elements αi = dsi
i of Z× S. We

say that α is admissible if one of the two following conditions is satisfied:



CHAPTER 2. THE KNEADING PAIR 40

(1) α is infinite, si ∈ {L,R} for all i ≥ 1 and there exists k ∈ N such that |di| ≤ k for all

i ≥ 1.

(2) α is finite of length n, sn ∈ {M,C} and si ∈ {L,R} for all i ∈ {1, . . . , n − 1}.

Notice that any itinerary is an admissible sequence. Now we shall introduce some notation

for admissible sequences (and hence for reduced itineraries).

The cardinality of an admissible sequence α will be denoted by |α| ( if α is infinite we write

|α| = ∞).

We denote by S the shift operator which acts on the set of admissible sequences of length

greater than one as follows : S(α) = α2α3 . . . if α = α1α2α3 . . . . We will write Sk for the k-th

iterate of S. Obviously Sk is only defined for admissible sequences of length greater than k.

Clearly, for each x ∈ R we have Sn(Î
F
(x)) = Î

F
(Fn(x)) if |Î

F
(x)| > n.

Let α = α1α2 . . . αn and β = β1β2 . . . be two sequences of symbols in Z × S. We shall write

α β to denote the concatenation of α and β (i. e. the sequence α1α2 . . . αnβ1β2 . . .). We also

shall use the symbols αn to denote

n times︷ ︸︸ ︷
α α . . . α and α∞ to denote α α . . . .

Let α = α1α2 . . . αn, be an admissible sequence. Set αi = dsi
i for i = 1, 2, . . . , n. We say that

α is even if Card{i ∈ {1, . . . , n}|si = R} is even. Otherwise we say that α is odd.

Now we endow the set of admissible sequences with a total ordering. First set M < L <

C < R. Then we extend this ordering to Z × S lexicographically. That is, we write ds < tm if

and only if either d < t or d = t and s < m. Let now α = α1α2 . . . and β = β1β2 . . . be two

admissible sequences such that α 6= β. Then there exists n such that αn 6= βn and αi = βi

for i = 1, 2, . . . , n − 1. We say that α < β if either α1α2 . . . αn−1 is even and αn < βn or

α1α2 . . . αn−1 is odd and αn > βn.

The following result shows that the above ordering of reduced itineraries is, in fact, the

ordering of points in [0, c
F
].

Proposition 2.2.1 Let F ∈ A. Then

(a) If x, y ∈ [0, c
F
], and x < y then Î

F
(x) ≤ Î

F
(y).

(b) If x, y ∈ [c
F
, 1) , and x < y then Î

F
(x) ≥ Î

F
(y).

Corollary 2.2.2 Let F ∈ A. For all x ∈ R we have Î
F
(0) ≤ Î

F
(x) ≤ Î

F
(c

F
).
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For a point x ∈ R we define the sequences Î
F
(x+) and Î

F
(x−) as follows. For each n ≥ 0

there exists δ(n) > 0 such that d(Fn−1(y)) and s(Fn(y)) take constant values for each y ∈
(x, x+δ(n)) (resp. y ∈ (x−δ(n), x)). Denote these values by d(Fn−1(x+)) and s(Fn(x+)) (resp.

d(Fn−1(x−)) and s(Fn(x−))). Then we set Î
F
(x+) = d(x+)s(F (x+))d(F (x+))s(F

2(x+)) . . . and

Î
F
(x−) = d(x−)s(F (x−))d(F (x−))s(F

2(x−)) . . . . Clearly, Î
F
(x+) and Î

F
(x−) are infinite admissible

sequences and, Î
F
(x+) = Î

F
((x + k)+) and Î

F
(x−) = Î

F
((x + k)−) for all k ∈ Z. Moreover, if

x 6∈ Z and |Î
F
(x)| = ∞ then Î

F
(x−) = Î

F
(x) = Î

F
(x+).

Let F ∈ A. The pair (Î
F
(0+), Î

F
(c−

F
)) will be called the kneading pair of F and will be

denoted by K(F ). Let AD denote the set of all infinite admissible sequences. Then for each

F ∈ A we have that K(F ) ∈ AD ×AD.

Let α = ds1
1 α2 . . ., be an admissible sequence. We will denote by α′ the sequence (d1 +

1)s1α2 . . . .

Let α, β, γ be admissible sequences such that β < γ . We will say that α is quasidominated

by β and γ if and only if the following statements hold:

(1) β ≤ Sn(α) ≤ γ for all n ∈ {0, 1, . . . , |α| − 1}.

(2) If for some n ∈ {1, 2, . . . , |α| − 1} we have Sn(α) = dR then Sn+1(α) ≥ β′ .

We will say that α is dominated by β and γ if and only if (1) and (2) hold with strict

inequalities.

Let F ∈ A. We say that α is quasidominated (respectively dominated) by F if α is quasidom-

inated (respectively dominated) by Î
F
(0+) and Î

F
(c−

F
).

We note that for F ∈ A we have d(F (0+)) = d(F (0−)) − 1. Hence, (Î
F
(0+))′ = Î

F
(0−).

The next result characterizes the set of reduced itineraries of a map F ∈ A in terms of the

kneading pair.

Proposition 2.2.3 Let F ∈ A. Then the following hold.

(a) Let x ∈ (0, 1) with x 6= c
F
. Then Î

F
(x) is quasidominated by F.

(b) Let α be an admissible sequence dominated by F. Then there exists x ∈ [0, c
F
] such that

Î
F
(x) = α.

The following result will be used in the study of the kneading pair.
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Corollary 2.2.4 Let F ∈ A. Then the following hold.

(a) Let x ∈ (0, c
F
). Then Î

F
(0+) ≤ Î

F
(x) ≤ Î

F
(c−

F
).

(b) Let x ∈ (c
F
, 1). Then Î

F
(0−) ≤ Î

F
(x) ≤ Î

F
(c−

F
).

Let α = α1α2α3 . . . be an admissible sequence, we say that α is periodic of period n if

Sn(α) = α and Si(α) 6= α for i = 1, 2, . . . , n − 1. We note that if α is a periodic sequence of

period n, then |α| = ∞ and there exist α1, . . . , αn ∈ Z× S such that α = (α1 . . . αn)∞. We also

note that if x is a periodic (mod 1) point of F such that |Î
F
(x)| = ∞, then Î

F
(x) is periodic

(recall that Sn(Î
F
(x)) = Î

F
(Fn(x))) but their periods are not necessarily equal.

2.3 The characterization of the kneading pair

In the preceding section, to each map F ∈ A, we assigned a pair from AD × AD; namely the

kneading pair. This pair is the symbolic version of the map because it characterizes the set of

itineraries that F can have (see Proposition 2.2.3). The aim of this section is to characterize the

pairs in AD×AD that can occur as a kneading pair of a map from A. To prove a first result in

this direction we need some preliminary definitions and results.

Let k ∈ Z. We denote by (Z × S)Nk the set of sequences α = ds1
1 ds2

2 . . . ∈ (Z × S)N such

that | di |≤ k for all i ≥ 1. Let α = ds1
1 ds2

2 . . . and β = tr1
1 tr2

2 . . . be two sequences in (Z × S)Nk .

We consider in (Z × S)N the topology defined by the metric d(α, β) =
∞∑
i=0

2−id(dsi
i tri

i ) where

d(dsi
i tri

i ) =





1 if dsi

i 6= tri

i ,

0 if dsi
i = tri

i .

With this topology, (Z × S)Nk is a compact metric space and the shift transformation S :

(Z × S)Nk −→ (Z × S)Nk defined by S(ds1
1 ds2

2 . . .) = ds2
2 ds3

3 . . . is continuous. Moreover, we can

extend in a natural way the ordering defined for the admissible sequences to the sequences from

(Z × S)Nk .

Let α, β be to admissible sequences such that α′ ≤ β. Let ADα,β denote the set of all admis-

sible sequences quasidominated by α and β union
{
α, β, α′

}
. Now, we define Γα,β : ADα,β −→

(Z × S)Nk as follows. If | γ |= ∞ then Γα,β(γ) = γ. If γ is finite and ends with C, then the
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sequence associated is the following

Γα,β(γ) =





γ β if β is infinite,

γ(β)∞ if β is finite and ends with C,

γ β α if β is finite and ends with M and α is infinite,

γ β(α)∞ if β is finite and ends with M and α is finite

and ends with M,

γ(β α)∞ otherwise.

If γ ends with M we proceed similarly with the roles of α and β, and M and C interchanged.

We note that the map Γα,β preserves the ordering of the sequences and that Sn ◦ Γα,β(γ) =

Γα,β ◦ Sn(γ) for all n ∈
{
0, 1, . . . | γ | −1

}
.

The following proposition gives the main properties of the kneading pair.

Proposition 2.3.1 For each F ∈ A we have that (Î
F
(0+))′ ≤ Î

F
(c−

F
) and Î

F
(0+) and Î

F
(c−

F
)

are quasidominated by F.

Proof. The first statement follows from Corollary 2.2.4(b) and the fact Î
F
(0+) = (Î

F
(0−))′.

Now, we prove the second statement. Denote by Γ
F

the map Γ
Î

F
(0+),Î

F
(c−

F
)
. From the part

of the proposition already proved it is defined. It is not difficult to show that Î
F
(x+) =

lim
y→x
y>x

Γ
F
(Î

F
(y)) and Î

F
(x−) = lim

y→x
y<x

Γ
F
(Î

F
(y)). Now, we consider several cases. Assume first

that Sn(Î
F
(0+)) = dL . . . (respectively Sn(Î

F
(c−

F
)) = dL . . .) for some n ≥ 0. Then there ex-

ists x ∈ (0, c
F
) close to 0 (respectively c

F
) such that D(Fn+1(x)) ∈ (0, c

F
) and Î

F
(x) coin-

cides with Î
F
(0) (resp. Î

F
(c

F
)) in the first n + 1 symbols. Then from Corollary 2.2.4(a) we

have that Î
F
(0+) ≤Î

F
(Fn+1(x)) ≤Î

F
(c−

F
). Thus Î

F
(0+) ≤ Γ

F
(Î

F
(Fn+1(x))) ≤Î

F
(c−

F
). Since

Γ
F
(Î

F
(Fn+1(x))) = Γ

F
(Sn+1(Î

F
(x))) = Sn+1(Γ

F
(Î

F
(x))), letting x tend to 0 from the right

we get Î
F
(0+) ≤ Sn(Î

F
(0+)) ≤Î

F
(c−

F
) (respectively letting x tend to c

F
from the left we

get Î
F
(0+) ≤ Sn(Î

F
(c−

F
)) ≤Î

F
(c−

F
)). Now, assume that Sn(Î

F
(0+)) = dR . . . (respectively

Sn(Î
F
(c−

F
)) = dR . . .) for some n ≥ 0. There exists x ∈ (0, c

F
) close to 0 (respectively c

F
)

such that D(Fn+1(x)) ∈ (c
F
, 1) and Î

F
(x) coincides with Î

F
(0) (resp. Î

F
(c

F
)) in the first n + 1

symbols. From Corollary 2.2.4(b) we have that Î
F
(0−) ≤Î

F
(Fn+1(x)) ≤Î

F
(c−

F
). Then, in a

similar way as above we can show that Î
F
(0−) ≤ Sn+1(Î

F
(0+)) ≤Î

F
(c−

F
) (respectively Î

F
(0−)

≤ Sn+1(Î
F
(c−

F
)) ≤Î

F
(c−

F
)) and the proposition follows.
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To deal with the properties of the kneading pair given by the above proposition we introduce

the following notions.

Let α ∈ AD. We say that α is minimal (respectively maximal) if and only if α ≤ Sn(α)

(respectively α ≥ Sn(α)) for all n ∈ {1, 2, . . . | α | −1} .

To characterize the pairs in AD × AD that can occur as a kneading pair of a map from A
we will define a subset E of AD × AD and, afterwards, we shall prove that this set consists of

all kneading pairs of maps from A. To this end we introduce the following notation.

We will denote by E∗ the set of all pairs (ν1, ν2) ∈ AD ×AD such that ν1 is minimal, ν2 is

maximal, | ν1 |=| ν2 |= ∞ and the following conditions hold:

(1) ν ′
1 < ν2.

(2) ν1 ≤ Sn(ν2) and Sn(ν1) ≤ ν2 for all n > 0.

(3) If for some n ≥ 0, Sn(νi) = dR . . . , then Sn+1(νi) ≥ ν′
1 for i ∈ {1, 2} .

Let a ∈ R. We set ǫi(a) = E(ia) − E((i − 1)a) and δi(a) = Ẽ(ia) − Ẽ((i − 1)a), where

Ẽ : R −→ Z is defined as follows

Ẽ(x) =





E(x) if x 6∈ Z,

x − 1 if x ∈ Z.

Also, we set

Îǫ(a) = ǫ1(a)Lǫ2(a)L . . . ǫn(a)L . . .

and

Îδ(a) = δ1(a)Lδ2(a)L . . . δn(a)L . . .

Let Î
∗
ǫ (a) = (Îǫ(a))′ and let Î

∗
δ(a) denote the sequence that satisfies (Î

∗
δ(a))′ = Îδ(a). Let

a = p/q with (p, q) = 1. We denote by ÎR(a) the sequence (δ1(a)L . . . δq−1(a)Lδq(a)R)∞ and let

Î
∗
R(a) be the sequence that satisfies (Î

∗
R(a))′ = ÎR(a). Now we set

Ea =





{(Îǫ(a), Î
∗
ǫ(a)), (Î

∗
δ(a), Îδ(a)), (Î

∗
R(a), ÎR(a))} if a = p/q ∈ Q, with (p, q) = 1,

{
(Î

∗
δ(a), Îδ(a))

}
if a 6∈ Q.
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Finally we denote by E the set E∗ ∪ (∪a∈REa). The set ∪a∈REa is the boundary of E while

E∗ is its interior (with respect to the topology introduced above).

The following result characterizes the kneading pairs of the maps from class A and is the

main result of this chapter. It will be proved in the next two subsections.

Theorem 2.3.2 For F ∈ A we have that K(F ) ∈ E . Conversely, for each (ν1, ν2) ∈ E there

exists F ∈ A such that K(F ) = (ν1, ν2).

2.3.1 Proof of the first statement of Theorem 2.3.2

We start by noting that if for F ∈ A we have (Î
F
(0+))′ < Î

F
(c−

F
) then, in view of Propo-

sition 2.3.1 and the definition of E , K(F ) ∈ E∗ ⊂ E . Thus, to prove the first statement of

Theorem 2.3.2, we only have to prove that if (Î
F
(0+))′ = Î

F
(c−

F
), then K(F ) ∈ Ea for some

a ∈ R.

Before starting the proof of this fact we will study the basic properties of the sequences

Îǫ(a), Îδ(a), Î
∗
ǫ (a) and Î

∗
δ(a). The following results are due to Alsedà and Mañosas (see [5]).

Lemma 2.3.3 Let a ∈ R. If a /∈ Z then δ1(a) = ǫ1(a) + 1. Furthermore, if a 6∈ Q then

δi(a) = ǫi(a) for all i > 1. That is, Î
∗
δ(a) = Îǫ(a) and Îδ(a) = Î

∗
ǫ(a). If a = p/q with (p, q) = 1

and q > 1 then ǫi(a) = δi(a) for i = 2, . . . , q − 1, δq(a) = ǫq(a) − 1 and, ǫi+q(a) = ǫi(a) and

δi+q(a) = δi(a) for all i ∈ N.

Theorem 2.3.4 Let F ∈ A. Then R
F

= [a, b] if and only if Î
∗
δ(a) ≤ Î

F
(0+) ≤ Îǫ(a) and

Îδ(b) ≤ Î
F
(c−

F
) ≤ Î

∗
ǫ (b).

Remark 2.3.5 Since ( Î
F
(0+))′ = Î

F
(0−), by the definition of the sequences Î

∗
δ(a), Îǫ(a), Îδ(a)

and Î
∗
ǫ(a) we have that Î

∗
δ(a) ≤ Î

F
(0+) ≤ Îǫ(a) is equivalent to Îδ(a) ≤ Î

F
(0−) ≤ Î

∗
ǫ (a). 2

In view of the above theorem and remark we get:

Lemma 2.3.6 Let F ∈ A be such that (Î
F
(0+))′ = Î

F
(c−

F
). Then R

F
is degenerate to a point.

The next lemma characterizes at the symbolic level the maps F ∈ A satisfying that (Î
F
(0+))′ =

Î
F
(c−

F
). It follows inmediately from the definitions.

Lemma 2.3.7 Assume that Î
F
(0+) = d

s1,1

1,1 . . . , Î
F
(c−

F
) = d

s1,2

1,2 . . . and (Î
F
(0+))′ = Î

F
(c−

F
).

Then, d1,1 + 1 = d1,2, and dn,1 = dn,2 and sn−1,1 = sn−1,2 for all n > 1.
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From Lemma 4.4 of [5], the proof of Theorem 2 of [10] and Lemma 1.6.3 we have the following

result.

Proposition 2.3.8 Let F ∈ A be such that (Î
F
(0+))′ = Î

F
(c−

F
) and R

F
= {a} with a ∈ R.

Then the map F has a twist orbit P of rotation number a such that P ∩ [0, 1) ⊂ [0, c
F
] and

F |P = Fr|P . Moreover, if a = p/q ∈ Q with (p, q) = 1, then P is a twist periodic orbit of period

q. Set µP = min P ∩ [0, c
F
] and νP = max P ∩ [0, c

F
] . Then the following statements hold:

(a) {0, c
F
} 6⊂ {µP , νP } .

(b) Assume that νP 6= c
F
. If µP 6= 0 then Î

F
(µP ) = Îǫ(a). Otherwise

Î
F
(0) = ǫ1(a)L . . . ǫq−1(a)Lǫq(a)M

and Î
F
(0+) = Îǫ(a).

(c) Assume hat µP 6= 0. If νP 6= c
F

then Î
F
(νP ) = Îδ(a). Otherwise

Î
F
(c

F
) = δ1(a)L . . . δq−1(a)Lδq(a)C

and Î
F
(c−

F
) = Îδ(a).

Now we are ready to prove the result we are looking for.

Proposition 2.3.9 Let F ∈ A be such that (Î
F
(0+))′ = Î

F
(c−

F
). Then there exists a ∈ R such

that R
F

= {a} and K(F ) ∈ Ea.

Proof. From Lemma 2.3.6 we have that R
F

= {a}. Assume that a 6∈ Q. From Lemma 2.3.3 and

Theorem 2.3.4 we see that K(F ) ∈ Ea. Now, assume that a = p/q with (p, q) = 1. Let P be

the twist periodic orbit of period q and rotation number p/q given from Proposition 2.3.8. If

µP = 0, from Proposition 2.3.8(a) we have νP 6= c
F

(here we use the notation from the statement

of Proposition 2.3.8). Therefore, from Proposition 2.3.8(b), Î
F
(0+) = Îǫ(a). Hence, Î

F
(c−

F
) =

(Îǫ(a))′ = Î
∗
ǫ(a) and so, K(F ) ∈ Ea. If νP = c

F
then, as above, µP 6= 0. By Proposition 2.3.8(c),

Î
F
(c−

F
) = Îδ(a) and, consequently, Î

F
(0+) = Î

∗
δ(a). So, K(F ) also belongs to Ea. We are left

with the case µP 6= 0 and νP 6= 0.
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We recall that Fr(x) = sup {F (y) : y ≤ x} . Hence, for all y ∈ P and z ≤ y we have

F (z) ≤ Fr(z) ≤ Fr(y) = F (y).

Let G = F q − p. Then G(z) ≤ G(y) = y for all y ∈ P and z ≤ y. Set P = {xi}i∈Z with

xi < xj if and only if i < j, and x0 = µP . Then, since P has period q we have xq−1 = νP and

xi+q = xi + 1 for each i ∈ Z. From Lemma 1.6.1 we get F (xi) = xi+p for each i ∈ Z. Thus, since

P ∩ [0, 1] ⊂ [0, c
F
) , each interval [xi, xi+1] is mapped homeomorphically (preserving ordering)

into [xi+p, xi+1+p] for i = 0, 1, . . . , q − 2. On the other hand [xq−1, xq] contains {c
F
, 1} in its

interior (recall that xq−1 = νP 6= c
F

and xq = µP + 1 6= 1). Since F |[xq−1,c
F ] is increasing and

c
F

< xq we obtain xq−1+p = F (xq−1) ≤ F (z) ≤ F (c
F
) ≤ F (xq) = xq+p for each z ∈ [xq−1, cF

] .

Since (p, q) = 1, for each i ∈ {1, 2, . . . , q − 1} , we have ip 6≡ 0 (mod q). Therefore, q − 1 + ip 6=
q − 1 + mq with m ∈ Z and so, xq−1+ip 6= xq−1 + m. Consequently, F |[xq−1+ip,xq+ip] is strictly

increasing for i = 1, 2, . . . , q−1. Therefore, for each z ∈ [xq−1, cF
] , G(z) ∈ [xq−1+qp − p,G(c

F
)] =

[xq−1,G(c
F
)] ⊂ [xq−1, xq] . Moreover, G|[xq−1,cF ] is strictly increasing. By Proposition 2.3.8(c)

we see that

Î
F
(xq−1) = Îδ(a) = (δ1(a)L . . . δq−1(a)Lδq(a)L)∞.

So, from above it follows that, for each z ∈ [xq−1, cF
] ,

Î
F
(z) = δ1(a)L . . . δq−1(a)Ldq

s(G(z))Î
F
(G(z))

where

dq =





δq(a) if G(z) < 1,

δq(a) + 1 otherwise,

(recall that Î
F
(x) = Î

F
(x + m) for each m ∈ Z). Now we consider three cases.

Case 1: G(c
F
) ∈ [xq−1, cF

] (see Figure 2.3.2). Then G([xq−1, cF
]) ⊂ [xq−1, cF

] and, if we take

z < c
F

close enough to c
F
, we have

Î
F
(c−

F
) = Î

F
(z) = δ1(a)L . . . δq−1(a)Lδq(a)LÎ

F
(G(z))

= (δ1(a)L . . . δq−1(a)Lδq(a)L)2Î
F
(G2(z))

= . . .

= Îδ(a).
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Case 2: G(c
F
) ∈ (c

F
, 1] (see Figure 2.3.3). We claim that G(1) ∈ (c

F
, G(c

F
)) . To prove the

claim we start showing that G(1) > c
F
. Otherwise, either G(1) ∈ [0, c

F
] or G(1) < 0. In the

first case Î
F
(1−) is of the form ds1

1 ds2
2 . . . dL

q . . . while s(G(c
F
)−) = R. This contradicts the fact

that Î
F
(1−) = (Î

F
(0+))′ = Î

F
(c−

F
). In the second case, take x < 1 close enough to 1 so that

Î
F
(x) and Î

F
(1−) coincide in the first q symbols and G(x) < 0. From above it follows that

either Î
F
(c

F
) and Î

F
(c−

F
) coincide in the first q symbols when G(c

F
) < 1 or Î

F
(c

F
) and Î

F
(c−

F
)

coincide in the first q − 1 symbols and d(F q(c
F
)) = d(F q(c−

F
)) + 1 when G(c

F
) = 1. Set

s
G

=





1 if G(c
F
) = 1,

0 if G(c
F
) < 1.

Hence, since Î
F
(1−) = (Î

F
(0+))′ = Î

F
(c−

F
) we have that

0 > G(x) ≥ E(G(x)) = E(F q(x)) − p =
(∑q

i=1 E(F i(x)) − E(F i−1(x))
) − p =

(∑q
i=1 d(F i−1(x))

) − p =
(∑q

i=1 d(F i−1(c
F
))

) − p − s
G

= E(G(c
F
)) − s

G
= 0;

a contradiction. In short, we have proved that G(1) > c
F
. Now we prove that G(1) < G(c

F
).

Note that if F (1) ≤ F (xq−1) then G(1) ≤ G(xq−1) = xq−1 < c
F
. Hence F (1) > F (xq−1). So,

there exists z1 ∈ [xq−1, cF
) such that F (z1) = F (1). Since c

F
< xq we have F (1) = F (z1) ≤

F (c
F
) < F (xq). Thus, from above it follows that G(1) < G(c

F
). This ends the proof of the

claim.

From the claim and its proof it follows that G|[cF
,1] is decreasing and G([c

F
, 1]) ⊂ (c

F
, 1] .

We note that from all said above, for each x ∈ [c
F
, 1] , there exists x∗ ∈ [xq−1, cF

] such that

G(x∗) = G(x). So, Î
F
(x) = Î

F
(x∗) = δ1(a)L . . . δq−1(a)Lδq(a)RÎ

F
(G(x)). Now take z < c

F
close

enough to c
F
. Since Gi(z) ∈ (c

F
, 1) for each i ≥ 1, we have

Î
F
(c−

F
) = Î

F
(z) = δ1(a)L . . . δq−1(a)Lδq(a)RÎ

F
(G(z))

= (δ1(a)L . . . δq−1(a)Lδq(a)R)2Î
F
(G2(z))

= . . .

= ÎR(a).

Case 3: G(c
F
) ∈ (1, xq] (see Figure 2.3.4). In a similar way as in Case 2 we get that G(1) ∈
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Figure 2.3.2: The map G|[xq−1,xq] in Case 1.

Figure 2.3.3: The map G|[xq−1,xq] in Case 2.
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Figure 2.3.4: The map G|[xq−1,xq] in Case 3.

[1, G(c
F
)) . Therefore, G([1, xq]) ⊂ [1, xq] . As in Case 2, for each x ∈ [1, G(c

F
)] there exists

x∗ ∈ [xq−1, cF
] such that G(x∗) = G(x) and so,

Î
F
(x) = Î

F
(x∗) = δ1(a)L . . . δq−1(a)L(δq(a) + 1)LÎ

F
(G(x)).

As in the previous two cases, for z < c
F

close enough to c
F

we have

Î
F
(c−

F
) = Î

F
(z) = δ1(a)L . . . δq−1(a)L(δq(a) + 1)LÎ

F
(G(z))

= (δ1(a)L . . . δq−1(a)L(δq(a) + 1)L)2Î
F
(G2(z))

= . . .

= (δ1(a)L . . . δq−1(a)L(δq(a) + 1)L)∞,

and from Lemma 2.3.3 we get that Î
F
(c−

F
) = Î

∗
ǫ (a). This ends the proof of the proposition.

Proof of the first statement of Theorem2.3.2. Let F ∈ A. If (Î
F
(0+))′ < Î

F
(c−

F
) then, as it is

been said before, K(F ) ∈ E∗ ⊂ E by Proposition 2.3.1. Otherwise, (Î
F
(0+))′ = Î

F
(c−

F
) and, by

Proposition 2.3.9, K(F ) ∈ Ea for some a ∈ R.
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2.3.2 Proof of the second statement of Theorem 2.3.2

The next theorem already proves the second statement of Theorem 2.3.2 in the case (ν1, ν2) ∈ E∗.

Theorem 2.3.10 Let (ν1, ν2) ∈ E∗. Then there exists F ∈ A such that K(F ) = (ν1, ν2).

Proof. Set νi = d
si,1

i,1 d
si,2

i,2 . . . d
si,k

i,k . . . for i = 1, 2. Since ν1 and ν2 are admissible there exist

k1, k2 ∈ Z such that k1 ≤ |di,j | ≤ k2 for all j ≥ 1 and i = 1, 2. Let F ∈ A be such that

F (0) = k1 − 1 and F (c
F
) = k2 + 1. Clearly K(F ) = (((k1 − 1)L)∞, (k2 + 1)R((k1 − 1)L)∞) and

νi is dominated by F for i = 1, 2. From Proposition 2.2.3(b) there exists xi ∈ [0, c
F
] such that

Î
F
(xi) = νi for i = 1, 2. By Proposition 2.2.1(a) we have that 0 < x1 < x2 < c

F
because ν1 < ν2.

Let x∗
1, x

∗
2 ∈ [c

F
, 1] be such that F (x∗

1) = F (x1) + 1 and F (x2) = F (x∗
2). Thus, Î

F
(x∗

1) = ν
′

1

and Î
F
(x∗

2) = ν2. Since ν
′

1 < ν2, from Proposition 2.2.1(b), we obtain that c
F

< x∗
2 < x∗

1 < 1.

We note that Î
F
(Fn(xi)) = Sn(Î

F
(xi)) = Sn(νi) for i = 1, 2. Therefore, if Fn(xi) ∈ [0, c

F
]

(respectively Fn(xi) ∈ [c
F
, 1]), by Proposition 2.2.1, we see that Fn(xi) ∈ [x1, x2] (respectively

Fn(xi) ∈ [x∗
2, x

∗
1]) because (ν1, ν2) ∈ E∗. So,

(Px1 ∪ Px2) ∩ [0, 1] ⊂ [x1, x2] ∪ [x∗
2, x

∗
1].

where Pxi
is the (mod. 1) orbit of xi by F for i = 1, 2. Set K = ((O(x1)∪O(x2))∩[0, 1])∪{x∗

2, x
∗
1}.

Let π : K −→ K be such that F (x) = π(x) + dx for x ∈ K, where dx ∈ Z. We note that

π(xi) = π(x∗
i ) for i = 1, 2, dx1 = dx∗

1
+ 1 and dx2 = dx∗

2
.

We choose a map h : R −→ R satisfying the following:

1. h(x + 1) = h(x) + 1 for all x ∈ R.

2. h(0) = 0.

3. h|R\(K+Z) is continuous and strictly increasing.

4. If x ∈ K then h(x) = lim
y→x
y<x

h(y) < lim
y→x
y>x

h(y).

Let g ∈ L be the nondecreasing map obtained from h−1 by extending it to the whole real line.

We note g is strictly increasing on h(R \ (K + Z)), for each x ∈ K there exists a closed interval

[ax, bx] ⊂ (0, 1) such that g([ax, bx]) = x and if x, x′ ∈ K then, x < x′ if and only if bx < ax′ . In

particular, since (x2, x
∗
2) ∩ K = ∅, h|(x2,x∗

2) is strictly increasing and g−1(c
F
) ∈ (bx2 , ax∗

2
). Then

we define G ∈ L as follows:
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1. G|[bx1 ,ax2 ] is strictly increasing and G(ax) = aπ(x) + dx and G(bx) = bπ(x) + dx for each

ax, bx ∈ [bx1, ax2 ].

2. G|[bx∗
2
,ax∗

1
] is strictly decreasing and G(ax) = bπ(x) + dx and G(bx) = aπ(x) + dx for each

ax, bx ∈ [bx∗

2
, ax∗

1
].

3. G(g−1(c
F
)) ∈ (aπ(x2)+dx2 , bπ(x2)+dx2), G|[ax2 ,g−1(c

F
)] is strictly increasing and G|[g−1(c

F
),bx∗

2
]

is strictly decreasing.

4. G(0) ∈ (aπ(x1) + dx1, bπ(x1) + dx1), G|[0,bx1 ] is strictly increasing and G|[bx∗
1
,1] is strictly

decreasing.

We note that G ∈ A and c
G

= g−1(c
F
). Moreover, for each x ∈ K we have that G([ax, bx]) ⊂

[aπ(x) + dx, bπ(x) + dx].

Now, we only have to prove that Î
G
(0+) = Î

G
(0) = Î

F
(x1) and Î

G
(c−

G
) = Î

G
(c

G
) = Î

F
(x2).

From all said above we see that E(Fn(x1)) = E(Gn(0)) and E(Fn(x2)) = E(Gn(c
G
)). Since

g(0) = 0, g(c
G
) = c

F
, g is non-decreasing and g|(bx2 ,ax∗

2
) is strictly increasing we have that

g(D(x)) ∈ (0, c
F
) (respectively g(D(x)) ∈ (c

F
, 1)) if and only if D(x) ∈ (0, c

G
) (respectively

D(x) ∈ (c
G
, 1)). Therefore, Î

G
(0) = Î

F
(x1) = ν1 and Î

G
(c

G
) = Î

F
(x2) = ν2. In short, K(G) =

(ν1, ν2) and the theorem follows.

Another strategy for the proof of the above theorem is the one used by de Melo and van

Strien in the proof of Theorem 4.1 of [24]. However our approach, suggested by F. Mañosas,

is considerably more simple in the case of maps with two critical points. It seems to us that

this approach, which uses strongly the characterization of the itineraries of a map given by

Proposition 2.2.3(b), could also simplify the proof in their case and could be used to deal with

similar problems for multimodal circle maps of degree one.

To end the proof of the second statement of Theorem 2.3.2 we still have to prove that if

(ν1, ν2) ∈ Ea for some a ∈ R then there exists F ∈ A such that R
F

= {a} and K(F ) = (ν1, ν2).

We note that the strategy used in the proof of Theorem 2.3.10 also works in this case. However,

we prefer a constructive approach which characterizes better the allowed kneading pairs in E \E∗.

We consider separately the rational and the irrational case. To deal with the rational case we

need the following two technical lemmas. The first one follows by direct computation.

Lemma 2.3.11 Let a ∈ Z then ǫi(a) = δi(a) = a for all i > 0.
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Lemma 2.3.12 Let F ∈ A ∩ C1(R,R) and let p/q ∈ Q with (p, q) = 1. Then the following

statements hold.

(a) Assume that Î
F
(c

F
) = δ1(p/q)L . . . δq−1(p/q)Lδq(p/q)C . Then there exists U, a neighbor-

hood of F in A∩C1(R,R), such that for each G ∈ U, Î
G
(c−

G
) is either ÎR(p/q) or Îδ(p/q).

(b) Assume that Î
F
(0) = ǫ1(p/q)L . . . ǫq−1(p/q)Lǫq(p/q)M . Then there exists U, a neighborhood

of F in A ∩ C1(R,R), such that for each G ∈ U, Î
G
(0+) is either Î

∗
R(p/q) or Îǫ(p/q).

Proof. We only prove statement (a). Statement (b) follows in a similar way. Assume that

Î
F
(c

F
) = δ1(p/q)L . . . δq−1(p/q)Lδq(p/q)C . Let P = {xi}i∈Z be the twist periodic orbit of period

q and rotation number p/q such that xq−1 = c
F
. Clearly, we can take F |[xq−2,c

F ] (see Figure 2.3.5)

in such a way that F has a periodic (mod. 1) point z ∈ (xq−2, cF
) close to c

F
, of period q, such

that (F q−p)|[z,c
F ] is strictly increasing, (F q−p)(x) > x for each x ∈ (z, c

F
) and Î

F
(z) = Îδ(p/q)

(in particular F (z) > 1 = F (1)). Since d
dx(F q − p)(c

F
) = 0 there exists 0 < ǫ < c

F
− z such

that | d
dx (F q − p)(x)| < 1/4 for each x ∈ (c

F
− ǫ, c

F
+ ǫ). Now we take U, a neighborhood of F

in C1(R,R) ∩ A, such that for each G ∈ U the following conditions hold:

(a) Î
G
(c

G
) = δ1(p/q)L . . . δq−1(p/q)Lδq(p/q)s(G

q(c
G

)) . . . ,

(b) G has a periodic (mod 1) point z
G

< c
G

close to z, of period q, such that G(z
G
) >

max{1, G(1)} and Î
G
(z

G
) = Îδ(p/q),

(c) c
G
∈ (c

F
− ǫ, c

F
+ ǫ), (Gq − p)|[zG

,c
G] is strictly increasing and (Gq − p)|[cG

,c
F

+ǫ] is strictly

decreasing,

(d) (Gq − p)(c
G
) ∈ (c

F
− ǫ, c

F
+ ǫ),

(e) | d
dx(Gq − p)(x)| < 1/2 for each x ∈ (c

F
− ǫ, c

F
+ ǫ).

We note that for each G ∈ U and x ∈ [z
G
, c

G
] we have that

Î
G
(x) = δ1(p/q)L . . . δq−1(p/q)Lδq(p/q)s(G

q(x)) . . . .

Let z∗
G
∈ (c

G
, 1) be such that G(z

G
) = G(z∗

G
) (such z∗

G
exists because, in view of (b), G(z

G
) >

G(1)). Clearly, for all x ∈
[
z

G
, z∗

G

]
we also have that

Î
G
(x) = δ1(p/q)L . . . δq−1(p/q)Lδq(p/q)s(G

q(x)) . . . .
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Figure 2.3.5: The graph of (F q − p) near c
F
.

If (Gq − p)(c
G
) ≤ c

G
, then for each x ∈ [z

G
, c

G
] we have that (Gq − p)i(x) ∈ [z

G
, c

G
] for each

i ∈ N. Hence, Î
G
(c−

G
) = Îδ(p/q). Now, assume that (Gq − p)(c

G
) > c

G
. From (c) and (d) we

see that c
G

< (Gq − p)(c
G
) ∈ (c

F
− ǫ, c

F
+ ǫ) and (Gq − p)(c

G
) is the maximum of Gq − p in

(c
F
− ǫ, c

F
+ ǫ). So (Gq − p)2(c

G
) < (Gq − p)(c

G
). On the other hand

(Gq − p)(c
G
) − (Gq − p)2(c

G
) = | d

dx(Gq − p)(ξ)| ((Gq − p)(c
G
) − c

G
)

with ξ between c
G

and (Gq − p)(c
G
). In view of (e) we have that | d

dx(Gq − p)(ξ)| < 1/2 and

hence (Gq − p)(c
G
) − (Gq − p)2(c

G
) < (Gq − p)(c

G
) − c

G
. Therefore c

G
< (Gq − p)2(c

G
) and,

consequently, (Gq − p)([c
G
, (Gq − p)(c

G
)]) ⊂ [c

G
, (Gq − p)(c

G
)] . From all said above we see that,

in this case, Î
G
(c−

G
) = ÎR(p/q).

Proposition 2.3.13 Let (ν1, ν2) ∈ Ep/q with p ∈ Z, q ∈ N and (p, q) = 1. Then there exists

F ∈ A such that R
F

= {p/q} and K(F ) = (ν1, ν2).
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Figure 2.3.6: The map F.

Proof. We will deal first with the case p/q ∈ Z. That is, q = 1. From Lemma 2.3.11 we have

Ep =
{
((pL)∞, (p + 1)L(pL)∞), ((p − 1)R(pR)∞, (pR)∞), ((p − 1)L(pL)∞, (pL)∞

}
.

Assume that (ν1, ν2) = ((p − 1)R(pR)∞, (pR)∞). Then we take F ∈ A such that a ∈ (0, c
F
)

is a fixed point of F −p such that (F −p)|[a,1] is a unimodal map satisfying that c
F

< (F −p)(1)

(see Figure 2.3.6). In consequence Î
F
(c−

F
) = Î

F
(1−) = (Î

F
(0+))′ and Î

F
(c

F
) = (pR)∞. Thus

K(F ) = ((p − 1)R, (pR)∞, (pR)∞). The rest of the cases follow in a similar way.

Now we consider the case q 6= 1. Assume first that

(ν1, ν2) ∈ {(Î∗δ(p/q), Îδ(p/q)), (Î
∗
R(p/q), ÎR(p/q))}.

Set P = {xi}i∈Z with xi =
i

q
+

1

2q
for each i ∈ Z. Let F ∈ C1(R,R) ∩A be such that

(1) F (0) = 0 and c
F

= xq−1,
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(2) F (x) = x +
p

q
for each x ∈ P,

(3) F is affine in the interval [x0, xq−2] .

Note that P is F−invariant and F i(x) = x+ip
q for each x ∈ P and i ∈ N. Hence, s(F i(c

F
)) =

s(F i(xq−1)) = L for i = 1, 2, . . . , q−1. Moreover, since F q(c
F
) = F q(xq−1) = xq−1 + q p

q = c
F

+p

we see that s(F q(c
F
)) = s(F q(xq−1)) = C. On the other hand,

d(c
F
) = d(xq−1) = E(F (xq−1)) − E(xq−1)

= E(2q−1
2q + p

q ) = E(p
q ) + 1

= ǫ1(p/q) + 1 = δ1(p/q),

and, for i = 2, . . . , q − 2,

d(F i(c
F
)) = d(F i(xq−1)) = E(F i+1(xq−1)) − E(F i(xq−1))

= E(2q−1
2q + (i + 1)p

q ) − E(2q−1
2q + ip

q )

=
(
E((i + 1)p

q ) + 1
)
−

(
E(ip

q ) + 1
)

= ǫi(p/q) = δi(p/q).

Lastly,

d(F q−1(c
F
)) = d(F q−1(xq−1)) = E(2q−1

2q + p) − E(2q−1
2q + (q − 1)p

q )

= E(p) −
(
E( (q−1)p

q ) + 1
)

= ǫq(p/q) − 1 = δq(p/q).

In consequence Î
F
(c

F
) = δ1(p/q)L . . . δq−1(p/q)Lδq(p/q)C .

Now we are ready to construct maps Hδ,HR
∈ A such that RHδ

= RHR
= {p/q} , K(Hδ) =

(Î
∗
δ(p/q), Îδ(p/q)) and K(H

R
) = (Î

∗
R(p/q), ÎR(p/q)). From Lemma 2.3.12(a) we have that there

exists U, a neighborhood of F in A ∩ C1(R,R), such that for each G ∈ U, Î
G
(c−

G
) is either

ÎR(p/q) or Îδ(p/q). Moreover, from the proof of Lemma 2.3.12, G has a periodic (mod 1) point

z
G

< c
G

of period q such that G(z
G
) > max{1, G(1)} and Î

G
(z

G
) = Îδ(p/q). Let z∗

G
∈ (c

G
, 1) be

such that G(z
G
) = G(z∗

G
). Clearly, for all x ∈

[
z

G
, z∗

G

]
we also have that

Î
G
(x) = δ1(p/q)L . . . δq−1(p/q)Lδq(p/q)s(G

q(x)) . . . .
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To construct Hδ take G ∈ U such that (Gq − p)(c
G
) ≤ c

G
and let c∗ ∈ (1, c

G
+ 1) be such that

G(c
G
) = G(c∗). We take Hδ ∈ C1(R,R)∩A such that c

Hδ
= c

G
, G|[

c∗−1,c
Hδ

] = Hδ|[
c∗−1,c

Hδ

] and

Hδ(x) > G(z
G
) for all x ∈ (c

G
, c∗) (see Figure 2.3.7). We note that Hδ([cG

, 1]) ⊂ Hδ(
[
z

G
, c

Hδ

]
) =

G([z
G
, c

G
]). Hence, from above we have that Î

Hδ
(0−) = Î

Hδ
(c−

Hδ
) = Î

G
(c−

G
) = Îδ(p/q). Thus

K(Hδ) = (Î
∗
δ(p/q), Îδ(p/q)). Furthermore, by Lemma 2.3.6 and Theorem 2.3.4 we see that

RHδ
= {p/q} . To construct HR we take G ∈ U such that (Gq−p)(c

F
) > c

F
. Let a = (Gq−p)(c

G
)

and let b ∈ (c
G
, z∗

G
) be such that (Gq − p)(b) = c

G
. Since (Gq − p)(b) = c

G
< (Gq − p)2(c

G
) =

(Gq − p)(a) and a, b ∈ (c
G
, 1) we have that b > a. Finally, let c∗ ∈ (1, c

G
+ 1) be such that

G(c
G
) = G(c∗). Then we take HR ∈ C1(R,R) ∩ A such that c

HR
= c

G
, HR|[c∗−1,a] = G|[c∗−1,a]

and HR(x) > G(b) for all x ∈ (a, c∗) (see Figure 2.3.8). In consequence, since b < z∗
G

we

have that G(b) > G(z∗
G
) = G(z

G
) and hence, HR(

[
c

HR
, 1

]
) ⊂ HR(

[
z

G
, c

HR

]
) = G([z

G
, c

G
]).

Therefore, from above we get that Î
HR

(0−) = Î
HR

(c−
HR

) = Î
G
(c−

G
) = ÎR(p/q). Thus, K(HR) =

(Î
∗
R(p/q), ÎR(p/q)) and RHR

= {p/q} .

To end the proof of the proposition it remains to construct a map Hǫ ∈ C1(R,R) ∩ A
such that RHǫ = {p/q} and K(Hǫ) = (Îǫ(p/q), Î

∗
ǫ (p/q)). To do it we proceed as in the above

construction of the map Hδ by using Lemma 2.3.12(b) and, instead of the map F, the map

F̃ ∈ C1(R,R) ∩ A defined as follows. Set P̃ = {x̃i}i∈Z with x̃i = i/q for each i ∈ Z. Then F̃ is

such that:

(1) F̃ is affine in the interval [x̃1, x̃q−1] ,

(2) F̃ (x̃i) = x̃i +
p

q
,

(3) c
F̃
∈ (xq−1, 1) and F̃ (c

F̃
) = c

F̃
+ E(p/q) + 1.

Proof of the second statement Theorem 2.3.2. If (ν1, ν2) ∈ E∗ then theorem follows from The-

orem 2.3.10. Otherwise, (ν1, ν2) ∈ Ea with a ∈ R. If a ∈ Q then the theorem follows from

Proposition 2.3.13. If a /∈ Q then, from the proof of Proposition 1 of [6] it follows that there

exists F ∈ A such that R
F

= {a} . Now, from Lemma 2.3.3 we see that Îδ(a) = Î
∗
ǫ (a) and

Î
∗
δ(a) = Îǫ(a). So, from Theorem 2.3.4 we obtain that K(F ) = (Î

∗
δ(a), Îδ(a)). Hence, by the

definition of Ea we see that K(F ) = (ν1, ν2).
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Figure 2.3.7: The maps Hδ and G.

Remark 2.3.14 As we have said before the set E \ E∗ is the boundary of E∗. It is natural that

if for F ∈ A we have that K(F ) /∈ E∗ then the topological entropy of F is zero. Indeed this

follows from Proposition 4.3.3. However, there are also maps F ∈ A such that K(F ) ∈ E∗

and the topological entropy of F is zero, as the following example shows. Let F be the map

shown in Figure 2.3.9. Then, clearly, Î
F
(c−

F
) = (1R)∞ and Î

F
(0+) = 0L(1L)∞. Therefore,

(Î
F
(0+))′ = (1L)∞ < (1R)∞ = Î

F
(c−

F
) and so K(F ) ∈ E∗. On the other hand, the non-wandering

set of the circle map which has F as a lifting is just two fixed points: exp(2πia) and exp(2πib).

Therefore, the topological entropy of F is zero (see for instance [35]). 2

2.4 Concluding remarks

In the context of this chapter the following question arises in a natural way: Does there exist

a family Fµ ∈ C1(R,R) ∩ A, depending continuously on µ, such that for each (ν1, ν2) ∈ E
there exists µ0 in the parameter space such that K(Fµ0) = (ν1, ν2)? In the literature, such a
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Figure 2.3.8: The maps HR and G.

parameter family of maps is usually called a full family (see [9] and [24]). It is well known that,

in the unimodal case, the family fµ(x) = µx(1 − x) with x ∈ [0, 1] and µ ∈ [1, 4] is full (see [9]).

The simplest non-invertible degree one circle maps are the ones with two critical points.

That is, the maps from class A. Among the families of such maps, the standard maps family

defined as

Fb,w(x) = x + w + b
sin(2πx)

2π

where x ∈ R and (b, w) ∈ (1,∞) × R is known to display all dynamical features. Therefore, it

is natural to think that this family is full. To discuss this problem we need to state a result due

to Malta [23]. First we introduce some notation

Let F ∈ L∩C1(R,R) We shall say that x ∈ R is a non-flat critical point if it is a critical point

and there exists an integer k > 1 such that F is Ck in a neighborhood of x and dk

dxk F (x) 6= 0.

We say that x ∈ R is a turning point if the map F has a local extremum in x.

Theorem 2.4.1 (Malta) Let F ∈ L∩ C2(R,R) and suppose that all non-turning critical points
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Figure 2.3.9: A map F ∈ A such that K(F ) ∈ E∗ and topological entropy zero.

are non-flat. If F has a turning critical point, then F has periodic points

From the fact that a map F ∈ L such that RF = {a} with a /∈ Q has no periodic points we

obtain the following simple corollary of Malta’s Theorem.

Corollary 2.4.2 Let F ∈ A ∩ C2(R,R) be such that RF = {a} with a /∈ Q. Then the map F

has flat non-turning critical points.

Therefore, we get

Corollary 2.4.3 Let F ∈ A be analytic. Then K(F ) /∈ ∪a/∈QEa. That is, RF is not degenerate

to an irrational.

Proof. Assume that K(F ) ∈ Ea for some a /∈ Q. From Lemma 2.3.3 and Theorem 2.3.4 we have

RF = {a} . Then, by Corollary 2.4.2, F has flat non-turning critical points. Since F is analytic

we have that F = 0; a contradiction.
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Corollary 2.4.3 tell us that there is no analytic full family in A. In particular, the standard

maps family is not full. This suggests that the “good” families from A will only be weakly full in

the following sense. We say that a family Fµ ∈ C1(R,R) ∩ A, depending continuously on µ, is

weakly full if for each (ν1, ν2) ∈ E∗ ∪ (∪a∈QEa) there exists µ0 in the parameter space such that

K(Fµ0) = (ν1, ν2). Following the techniques of the proof of Theorem 4.1 of [24] seems rasonable

to be able to prove the following.

Conjeture The standard maps family is weakly full.



Chapter 3

Self-similarity operators for maps in

A

3.1 Introduction

In this chapter we develop some topological tools in order to describe the bifurcations of

parametrized families of maps from A at the symbolic level. In the literature (see [7], [17],

[11], [13], and [19]), certain bifurcations are described in terms of the set of parameter values for

which the maps have a determinate rotation interval. More precisely, let Fµ : ∆ × R −→ R be

a continuous parameter family where Fµ ∈ A for all µ ∈∆. The bifurcations are then described

in terms of the following two sets. For (a, b) ∈ R2 with a ≤ b we define

TR(a) =
{
µ ∈ ∆ : min RFµ = a

}

and

TL(b) =
{
µ ∈ ∆ : max RFµ = b

}
.

The sets TL(a) and TR(b) give (in the parameter space ∆) for the standard map family the

picture known as an Arnol’d tongue (see [7], [11], [13], and [19]). Indeed, the Arnol’d tongue of

a ∈ R is defined to be TL(a) ∪ TR(a).

In order to study the bifurcation structure of the Arnol’d tongues at the symbolic level we

62
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introduce some notation and preliminary definitions. Let

Eǫ =
{
α ∈ AD : ∃ β ∈ AD such that (α, β) ∈ E

}

and

Eδ =
{
β ∈ AD : ∃α ∈ AD such that (α, β) ∈ E

}
.

We consider in Eǫ and Eδ the order topology. Let Eǫ × Eδ be with the product topology. It can

be seen that E is strictly contained in Eǫ × Eδ. To see this consider for example the set A =

{(0L)∞, (1L)∞} of admissible sequences. Since ((−1L)∞, (0L)∞)((0L)∞, (1L)∞), ((1L)∞, (2L)∞) ∈
E , we have that A ⊂ Eǫ and A ⊂ Eδ. In consequence {((0L)∞, (1L)∞), ((1L)∞, (0L)∞)} ⊂ Eǫ×Eδ,

but ((0L)∞, (1L)∞) ∈ E and ((1L)∞, (0L)∞) /∈ E .

We consider E endowed with the induced topology from Eǫ × Eδ. Let πǫ : Eǫ × Eδ −→ Eǫ

defined as πǫ((α, β)) = α and πδ : Eǫ × Eδ −→ Eδ defined as πδ((α, β)) = β. Clearly πǫ and πδ

are continuous.

Let a ∈ R and set Qǫ(a) = [Î
∗
δ(a), Îǫ(a)] ⊂ Eǫ and Qδ(a) = [Îδ(a), Î

∗
ǫ(a)] ⊂ Eδ. With this

notation, from Theorems 2.3.4 and 2.3.2, we can write Eǫ = ∪a∈RQǫ(a) and Eδ = ∪a∈RQδ(a).

Moreover it can be seen [5] that if a, b ∈ R with a < b, then for each α ∈ Qǫ(a) (respectively α ∈
Qδ(a)) and β ∈ Qǫ(b) (respectively β ∈ Qδ(b)) we have α < β (in particular Qǫ(a) ∩ Qǫ(b) = ∅
and Qδ(a) ∩ Qδ(b) = ∅).

Now, we define the symbolic Arnol’d tongues as follows. For a ∈ R we set

Tǫ(a) = π−1
ǫ (Qǫ(a)) ∩ E

and

Tδ(a) = π−1
δ (Qδ(a)) ∩ E .

Then by Theorem 2.3.4 we can write

E =
⋃

(a,b)∈R2

a≤b

(Tǫ(a) ∩ Tδ(b)).

Moreover this theorem can be stated in the following way. Let F ∈ A. Then RF = [a, b] if

and only if K(F ) ∈ Tǫ(a) ∩ Tδ(b). To motivate the above definition let Fµ : ∆ × R −→ R be a
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Figure 3.1.1: An Arnol’d tongue of the standard family in the rational case.

continuous parameter family where Fµ ∈ A for all µ ∈∆. Let also λ : ∆ −→ E be the continuous

map given by λ(µ) = K(Fµ). Then, for each a ∈ R, we have that TR(a) = λ−1(Tǫ(a)) and

TL(a) = λ−1(Tδ(a)). For example consider the standard maps family. It is defined as

Fb,w(x) = x + w +
b

2π
sin(2πx)

where x ∈ R, b > 0, and w ∈ R. We note that for all b > 1 and w ∈ R, Fb,w ∈ A. Thus,

∆ = (1,∞) ×R (see Figure 3.1.1 where a typical picture of the structure of the sets TR(a) and

TL(a) when a ∈ Q is shown).

Since Fb,w is a family of analytic maps, from Corollary 2.4.3, we have that if a /∈ Q then

TR(a) ∩ TL(a) = ∅ because Tǫ(a) ∩ Tδ(a) = {(Îǫ(a), Îδ(a))} ∈ Ea. Moreover, from Lemma 2.3.3

we have that Tǫ(a) = π−1
ǫ (Îǫ(a)) ∩ E and Tδ(a) = π−1

δ (Îδ(a)) ∩ E . Thus, in the irrational case,

we obtain a picture for the Arnol’d tongue as the one shown in Figure 3.1.2.

The aim of this chapter is to study the bifurcation and self–similar structures of the Arnol’d

tongues (in the parameter space) by studying the symbolic structure of the symbolic Arnol’d

tongues. Also we want to describe at a symbolic level the bifurcations occurring when the left
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Figure 3.1.2: The Arnold’ tongue in the parameter space in the irrational case.

(respectively right) endpoint of the rotation interval crosses a rational. From all said above, the

description arising from this approach will be valid for all “typical” families of maps from A (i.e.,

families for which the images of the critical points depend monotonically of the parameters). To

do it we will define and study two self–similarity operators in the symbolic spaces Eǫ and Eδ. By

means of these operators we will be able to describe the internal structure of the “boxes” Qǫ(a)

and Qδ(a) and, hence, to obtain the symbolic structure of the symbolic Arnol’d tongues.

The following result characterizes the sets Eǫ and Eδ in a form that will be useful in the rest

of the chapter. The proof is given in the appendix 3.5.

Theorem 3.1.1 The following statements hold.

(a) α ∈ Eǫ if and only if it is minimal and satisfies that if for some n ≥ 0, Sn(α) = dR . . .

then Sn+1(α) ≥ α′.

(b) β ∈ Eδ if and only if it is maximal.

The chapter is organized as follows. In Sections 3.2 and 3.3 we define and study the two

symbolic operators. Lastly, in Section 3.4, we use these operators to state and prove the main
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result of this chapter.

3.2 The ⋆−product

3.2.1 Introduction

The aim of this section is to characterize the sets of sequences which, roughly speaking, cor-

respond to the first (respectively second) component of the kneading pair of maps F ∈ A for

which there exist p ∈ N, q ∈ Z and a closed interval J containing c
F

(respectively 0) such that

(F q − p)|J is a unimodal map (see definition below). We make this study at a symbolic level

by using a ⋆−product which relates the symbolic spaces Eǫ and Eδ with the space of kneading

sequences of unimodal maps. Moreover, we will show how the “unimodal symbolic space” is

embedded into Eǫ and Eδ. This section is organized as follows. In Subsection 3.2.2 we introduce

the appropriate notation for the symbolic dynamics of unimodal maps. In Subsection 3.2.3 we

define the ⋆−product and we state the main result of this section. In Subsection 3.2.4 we give

some technical results and finally in Subsection 3.2.5 we prove the main result of this section.

3.2.2 A survey on the kneading theory for unimodal maps

Let I be a closed interval and let f : I −→ I be a continuous map. We say that f is unimodal if

1. f(max I) = f(min I) ∈ ∂I

2. There exists c ∈ Int(I) such that the maps f |[min I,c] and f |[c,max I] are homeomorphisms.

The set of all unimodal maps from I to itself will be denoted by U(I). A map f ∈ U(I) will

be called positive if f |[min I,c] is increasing. Otherwise, f will be called negative.

Let f ∈ U(I) and let x ∈ I. We associate with x a finite or infinite sequence of the symbols

L,C,R called its itinerary. To do it we introduce the following notation. Let f : I −→ I be

continuous. We will say that f is locally increasing (respectively decreasing) at x ∈ I if there

exists an open neighbourhood V of x in I such that f |V is increasing (respectively decreasing).
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Now, we define the i − th address of a point x, that we denote by θi(x), as follows:

θi(x) =





L if f i is locally increasing at x.

C if f i(x) = c,

R if f i is loacally decreasing at x.

We define the itinerary of x denoted by θf (x) as follows

1. θf (x) = θ0(x)θ1(x) . . . θn(x) . . . if θi(x) ∈ {L,R} for all i ≥ 0.

2. θf (x) = θ0(x)θ1(x) . . . θn(x) if θn(x) = C, and θi(x) ∈ {L,R} for all i ∈ {0, 1, . . . n − 1}.

Given n ∈ N and y ∈ I, there exists δ > 0 such that θn(y) takes constant value L or R in the

interval (x, x + δ). We denote this value by for θn(x+). In a similar way we can define θn(x−).

With this notation we set θf (x+) = θ1(x
+)θ2(x

+) . . . and θf (x−) = θ1(x
−)θ2(x

−) . . . . We note

that if θf (x) is infinite then θf (x) = θf (x+) = θf (x−).

The sequence θf (f(c)+) is called the kneading sequence of f. We will denote it by k(f).

Let A = A0A1 . . . be a sequence of elements Ai ∈ {L,C,R}. We say that A is admissible if

one of the following two conditions is satisfied:

1. A = A0A1 . . . An . . . if Ai ∈ {L,R} for all i ≥ 0.

2. A = A0A2 . . . An if An = C, and Ai ∈ {L,R} for all i ∈ {0, 1, . . . n − 1}.

Now, we introduce an ordering in the set of all admissible sequences. We set L < C < R and

we extend this ordering lexicographically to the set of all admissible sequences as follows. Let

K0K1 . . . Kn be a finite (or empty) sequence of symbols L,R. We say that K0K1 . . . Kn is even

(respectively odd) if it has an even (respectively odd) number of R′s. Assume that K = K0K1 . . .

and K ′ = K ′
0K

′
1 . . . are admissible sequences such that K 6= K ′. Let n be such that Ki = K ′

i for

i < n and Kn 6= K ′
n. Then we say that K < K ′ if either

1. Kn < K ′
n and K0K1 . . . Kn−1 is even.

2. Kn > K ′
n and K0K1 . . . Kn−1 is odd.

We note that if x < y and f ∈ U(I) then θf (x) ≤ θf (y) if f is positive and θf (x) ≥ θf (y) if

f is negative.
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Now, we define the shift operation S on admissible sequences as follows. If K = K0K1 . . .

then we set S(K) = K1K2 . . . which is also an admissible sequence. If K0 = C, then S is

undefined. We write Sn to denote the n−fold iterate of S. Note that for each x ∈ I and

f ∈ U(I) we have S(θ(x)) = (θ(f(x))).

An admissible sequence K will be called maximal if and only if Sn(K) ≤ K for each n < |K|
where |K| denotes the length of K. We note that for each f ∈ U(I) (independently of the

fact that f is positive or negative), k(f) is maximal and admissible with length infinite. Given

K = K0K1 . . . , an admissible sequence, we will write K̂ to denote K̂0K̂1 . . . where L̂ = R and

R̂ = L. We note that K is maximal if and only if K̂ is minimal, that is Sn(K̂) ≥ K̂ for each

n < |K|.
From [9], it follows that for each admissible infinite maximal sequence K there exist f, g ∈

U(I), f positive and g negative, such that k(f) = k(g) = K. We shall denote by K the set of all

admissible infinite maximal sequences.

3.2.3 Definition of the ⋆−products and statement of the main result

We start by introducing some notation. Let Ξ denote the set of all finite sequences with symbols

in Z×{L,R} (of course we consider the empty sequence as an element of Ξ). Let α = ds1
1 . . . dsn

n ∈
Ξ. We denote by α′ the sequence (d1+1)s1 . . . dsn

n (if α is the empty sequence then we set α′ = α).

We say that α is even (respectively odd) if (s1, . . . , sn) has an even (respectively odd) number

of symbols R. We note that, with this definition, the empty sequence is even.

Now we consider the set of sequences which occur as reduced itineraries of periodic critical

points. Indeed we will denote by Pǫ (respectively Pδ) the set of all minimal sequences of the form

βdM satisfying that if for some n ∈ {1, . . . , |βdM | − 1}, Sn−1(βdM ) = tR . . . then Sn(βdM ) >

β′dM (respectively the set of all maximal sequences of the form βdC) with β ∈ Ξ and d ∈ Z

and such that if β is not empty then
{
(βdL)∞, β(d − 1)R(β′(d − 1)R)∞

}
⊂ Eǫ (respectively

{
(βdL)∞, (βdR)∞

}
⊂ Eδ).

We are ready to define the ⋆−products. We start by defining the product ⋆δ : Pδ×K −→ AD
as follows. Let γ = βdC ∈ Pδ and K = K1K2 . . . ∈ K. Then we define

γ ⋆δ K =





βdK1βdK2β . . . if β is even,

βdK̂1βdK̂2β . . . if β is odd.
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Now we define ⋆ǫ : Pǫ ×K −→ AD. Let β ∈ Ξ and s ∈ {L,R}. We set

χ(s, β) =





β if s = L,

β′ if s = R.

Also, for d ∈ Z we set

ϕ(s, d) =





dL if s = L,

(d − 1)R if s = R.

Let γ = βdM ∈ Pǫ and K = K1K2 . . . ∈ K. Then we define γ ⋆ǫ K as follows. If β is not empty

then

γ ⋆ǫ K =





βϕ(K1, d)χ(K1, β)ϕ(K2, d)χ(K2, β) . . . if β is even,

βϕ(K̂1, d)χ(K1, β)ϕ(K̂2, d)χ(K2, β) . . . if β is odd.

If β is empty then γ ⋆ǫ K = dK1
1 dK2

2 . . . where, if K1 = L then di = d for all i ≥ 1 and if K1 = R

then d1 = d − 1 and

di =





d + 1 if Ki−1Ki = RL,

d if Ki−1Ki ∈ {LL,RR} ,

d − 1 if Ki−1Ki = LR,

for i ≥ 2.

The main result of this section which studies the properties of the ⋆−products is the following.

Theorem 3.2.1 Let γ = βdM ∈ Pǫ, α = βdC ∈ Pδ and K ∈ K. Then γ ⋆ǫ K ∈ Eǫ and

α⋆δ K ∈ Eδ. If β is even then γ⋆ǫ is order reversing and α ⋆δ is order preserving. Otherwise, γ⋆ǫ

is order preserving and α ⋆δ is order reversing. Moreover γ ⋆ǫ K is connected in Eǫ and γ ⋆δ K
in Eδ.

The above theorem characterizes at a symbolic level the “unimodal boxes” in the spaces

Eǫ and Eδ. Indeed, if we consider the set K endowed with the order topology (that is, K =

[L∞, RL∞]) then, from Theorem 3.2.1, we see that if γ = βdM ∈ Pǫ (respectively γ = βdC ∈ Pδ),

then

γ ⋆ǫ K =





[γ ⋆ǫ RL∞, γ ⋆ǫ L∞] if β is even,

[γ ⋆ǫ L∞, γ ⋆ǫ RL∞] if β is odd.
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(respectively

γ ⋆δ K =





[γ ⋆δ RL∞, γ ⋆δ L∞] if β is odd,

[γ ⋆δ L∞, γ ⋆δ RL∞] if β is even).

The set γ ⋆ǫ K will be called the ǫ−unimodal box of γ and the set γ ⋆δ K will be called the

δ−unimodal box of γ.

3.2.4 Preliminary results

In this subsection we study the itineraries of the critical points when they are periodic and some

of the basic properties of the ⋆−products. These results will be used to prove Theorem 3.2.1.

We start with the following technical lemmas.

Lemma 3.2.2 Let F ∈ A. Then the following statements hold.

(a) Assume that 0 is a periodic (mod 1) point of period n. Then there exist β ∈ Ξ and d ∈ Z,

such that Î
F
(0+) is either (βdL)∞ with β even or βdR(β′dR)∞ with β odd. Moreover, if

Î
F
(0+) = (βdL)∞ then β(d − 1)R(β′(d − 1)R)∞ ∈ Eǫ and if Î

F
(0+) = βdR(β′dR)∞ then

(β(d + 1)L)∞ ∈ Eǫ.

(b) Assume that c
F

is a periodic (mod 1) point of period n. Then there exist β ∈ Ξ and

d ∈ Z, such that Î
F
(c−

F
) is either (βdL)∞ with β even or (βdR)∞ with β odd. Moreover,

if Î
F
(c−

F
) = (βdL)∞ then (βdR)∞ ∈ Eδ and if Î

F
(c−

F
) = (βdR)∞ then (βdL)∞ ∈ Eδ.

Proof. We start proving statement (a). Assume first that Î
F
(0) = βtM for some β ∈ Ξ of length

n−1 even. If x > 0 is sufficiently close to 0 we have that Fn |[0,x] is increasing and Fn(x) is also

close to Fn(0) = 0. Therefore, Î
F
(0+) = βtLÎ

F
(0+). So Î

F
(0+) = (βtL)∞. Now, assume that β

is odd. Take x < 0 sufficiently close to 0. Then Fn |[x,0] is increasing and Fn(x) is also close to

Fn(0). Thus Î
F
(0−) = β′(t−1)RÎ

F
(0−). Therefore Î

F
(0−) = (β′(t−1)R)∞ and, in consequence,

Î
F
(0+) = β(t − 1)R(β′(t − 1)R)∞.

To prove the second statement of (a) in this case we only need to show that there exists

G ∈ A such that Î
G
(0+) = β(t − 1)R(β′(t − 1)R)∞ if β is even or Î

G
(0+) = (βtL)∞ if β is

odd. We note that the proof of Lemma 2.3.12 does not depend on the fact that the orbit under

consideration is twist. So, if Î
F
(0) = βtM the statement follows from Lemma 2.3.12 and the

part of (a) already proven.
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Now, assume that Î
F
(0) = γkC and Î

F
(c

F
) = νtM where γ, ν ∈ Ξ, γ has length n1 − 1, ν

has length n2− 1 and n1 +n2 = n. If x > 0 is sufficiently close to 0 then Fn1(x) is close to c
F
. If

γ is even then Fn1 |[0,x] is strictly increasing and, hence, Î
F
(0+) = γkRÎ

F
(c+

F
). Otherwise, if γ

is odd, Fn1 |[0,x] is strictly decreasing and Î
F
(0+) = γkLÎ

F
(c−

F
). Let now x > c

F
be sufficiently

close to c
F
. If ν is even, then Fn2 |[cF ,x] is strictly decreasing and Î

F
(c+

F
) = ν(t − 1)RÎ

F
(0−).

Otherwise, if ν is odd, Fn2 |[cF ,x] is strictly increasing and Î
F
(c+

F
) = νtLÎ

F
(0+). We recall that

Î
F
(c+

F
) = Î

F
(c−

F
) and that if Î

F
(0−) = (Î

F
(0+))′. Hence, if we set

β =





γkRν if γ is even,

γkLν if γ is odd,

we get

Î
F
(0+) =





β(t − 1)R(β′(t − 1)R)∞ if ν is even,

(βtL)∞ if ν is odd,

This ends the proof of the first part of statement (a).

Now, we prove the second statement of (a) in this case. Let P be the (mod. 1) orbit of 0 by

F. Then 0, c
F
∈ P. Let x0 = min(P ∩ (c

F
, 1]), x1 = max(P ∩ (0, c

F
)), J = (c

F
, x0) if γ is even

and J = (x1, cF
) if γ is odd. Let G ∈ A ∩ C1(R,R) be close enough to F such that c

G
∈ J ,

G|[0,1]\J = F |[0,1]\J and G(c
G
) ∈ (F (c

F
),min(P ∩ (F (c

F
),∞))). Thus, clearly Î

G
(0) = βkM .

From the proof of the previous case, since β has always different parity than ν, we get

Î
G
(0+) =





(βtL)∞ if ν is odd (β even),

β(t − 1)R(β′(t − 1)R)∞ if ν is even (β odd),

and the proof of (a) follows by using G instead of F. Statement (b) follows in a similar way.

The next lemma gives some properties of the sequences in Pǫ in Pδ.

Lemma 3.2.3 Let β = β1 . . . βn−1 ∈ Ξ. The following statements hold.

(a) If βdM ∈ Pǫ. Then (βdL)∞ and (β′(d − 1)R)∞ are periodic of period n.

(b) If βdC ∈ Pδ. Then (βdL)∞ and (βdR)∞ are periodic of period n.

Proof. By the minimality of βdM we have that Sj(βdM ) > βdM for j = 1, 2, . . . , n − 1. Assume

that (βdL)∞ is periodic of period k < n and set m = n/k. Then βdL = (β1 . . . βk−1d
L)m and,
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hence,

(β1 . . . βk−1d
L)m−1β1 . . . βk−1d

M = βdM < Sn−k(βdM ) = β1 . . . βk−1d
M .

In consequence β1 . . . βk−1 is even and so

β1 . . . βk−1d
L > β1 . . . βk−1(d − 1)R.

Since βdM ∈ Pǫ then β1 . . . βk−1d
L(β(d − 1)R)(β′(d − 1)R)∞ ∈ Eǫ. Hence, by Theorem 3.1.1(a),

we have that

(β1 . . . βk−1d
L)m−1β1 . . . βk−1(d − 1)R(β′(d − 1)R)∞ ≤ β1 . . . βk−1(d − 1)R . . . =

Sn−k(β(d − 1)R(β′(d − 1)R)∞);

a contradiction. The proof of statement (a) in the case (β′(d − 1)R)∞ and statement (b) follow

in a similar way.

The next lemma studies the relation between the periodic sequences in Eǫ and Eδ and their

shifts.

Lemma 3.2.4 The following statements hold.

(a) Let β = (β1 . . . βn)∞ ∈ Eǫ. Then Sj(β) > β∗ for all j = 1, 2, . . . , n − 1 where β∗ is either

β if βj = dL . . . or β
′

if βj = dR . . . .

(b) Let β = (β1 . . . βn)∞ ∈ Eδ. Then Sj(β) < β for all j = 1, 2, . . . , n − 1.

Proof. We prove (a). Statement (b) follows in a similar way. Let j ∈ {2, . . . , n}. If βj−1 = dL for

some d ∈ Z then, by Theorem 3.1.1, since Sj−1(β) ≥ β and Sj−1(β) 6= β the lemma follows in

an obvious way. If βj−1 = dR for some d ∈ Z, we have Sj−1(β) ≥ β′. Assume that Sj−1(β) = β′.

Then
n︷ ︸︸ ︷

βjβj+1 . . . βnβ1 . . . βj−1

n︷ ︸︸ ︷
βj . . . βnβ1 . . . βj−1 . . . = β′

1β2 . . . βnβ1 . . . βn . . .

and, hence, β′
1 = βj = β1; a contradiction. This ends the proof of (a).

The proof of the following lemma follows by direct computation.

Lemma 3.2.5 The following statements hold.
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(a) Let f ∈ U(I) be negative. If f(c) ≥ c, then k(f) = L∞. Otherwise k(f) = RS(k(f)) and

there exists c− < c < c+ with f(c−) = f(c+) = c. Then the following statements hold.

(a.1) θ(x) = RL . . . if and only if x ∈ [inf I, c−) .

(a.2) θ(x) = RR . . . if and only if x ∈ (c−, c) .

(a.3) θ(x) = LR . . . if and only if x ∈ (c, c+) .

(a.4) θ(x) = LL . . . if and only if x ∈ (c+, sup I] .

(b) Let f ∈ U(I) be positive. If f(c) ≤ c, then k(f) = L∞. Otherwise k(f) = RS(k(f)) and

there exists c− < c < c+ with f(c−) = f(c+) = c. Then the following statements hold.

(b.1) θ(x) = LR . . . if and only if x ∈ (c+, sup I] .

(b.2) θ(x) = RR . . . if and only if x ∈ (c, c+) .

(b.3) θ(x) = LR . . . if and only if x ∈ (c−, c) .

(b.4) θ(x) = LL . . . if and only if x ∈ [inf I, c−) .

Let I, J ⊂ R two closed intervals. Let f : I −→ I and g : J −→ J two continuous maps. We

say that f is topologically conjugate to g if there exists a homeomorphism h : I −→ J such that

h ◦ f = g ◦ h. From [9] (see also [24]) we have that if f ∈ U(I) and g ∈ U(J) are topologically

conjugate then k(f) = k(g).

The next proposition justifies the definition of the ⋆−products in the case β empty.

Proposition 3.2.6 Let K ∈ K and d ∈ Z. Then the following statements hold.

(a) There exist F ∈ A and J ⊂ R, a closed interval containing 0, such that (F − d) |J is

unimodal with k((F − d) |J ) = K and ÎF (0+) = dM ⋆ǫ K.

(b) There exists F ∈ A and J ⊂ R, a closed interval containing c
F
, such that (F − d) |J is

unimodal with k((F − d) |J ) = K and ÎF (c−F ) = dC ⋆δ K.

Proof. Let f ∈ U(I) be negative such that k(f) = K. Take ǫ > 0 and J = [−ǫ, ǫ] , and let

h : I −→ J be the unique increasing map such that h(c) = 0 and h is affine in [min I, c], [c,max I].

Let F ∈ A be such that F (x) = h◦f ◦h−1(x)+d for each x ∈ J. Clearly, (F−d) |J is topologically

conjugate to f. Then k((F − d) |J) = k(f) = K1K2 . . . . We observe that since (F − d) maps J



CHAPTER 3. SELF-SIMILARITY OPERATORS 74

into itself we have that F (J) ⊂ J + d. Since F ∈ L we have that for all j ≥ 1, F j(J) ⊂ J + jd.

On the other hand, since s((F −d)j(0+)) = s(F j(0+)) we get that for all j ≥ 1, s(F j(0+)) = Kj.

Assume that (F − d)(0) ≥ 0, then f(c) ≥ c and, from Lemma 3.2.5, we have that k(f) = L∞.

Since F (0) ≥ d we have that F j(0) ∈ [0, ǫ] + jd for all i ≥ 0. Then for all i ≥ 1 we have

d(F j(0+)) = jd − (j − 1)d = d and ÎF (0+) = dM ⋆ǫ K. Now, assume that (F − d)(0) < 0.

Then f(c) < c and, from Lemma 3.2.5(a), we have that K1 = R. Since F (0) < d we obtain that

F (0) ∈ [−ǫ, 0] + d. Then d(0+) = d − 1 and so ÎF (0+) = (d − 1)R . . . . Let j ≥ 2. Assume that

Kj−1Kj = RL. Then Sj−2(k(f)) = θ(f j−2(x)) = RL . . . for x > f(c), close enough to f(c). From

Lemma 3.2.5 (a.1) we have that f j−1(c) ∈ [min I, c−) and, hence, F j−1(0) ∈ [−ǫ, h(c−))+(j−1)d.

Moreover F j(0) ∈ (0, ǫ] + jd. Then d(F j−1(0+)) = jd− ((j − 1)d− 1) = d + 1. If Kj−1Kj = LL,

then, F j−1(0) ∈ (h(c+), ǫ]+ (j−1)d and F j(0) ∈ (0, ǫ]+ id. So d(F j−1(0+)) = jd− (j −1)d = d.

If Kj−1Kj = RR, then F j−1(0+) ∈ (h(c−), 0) + (j − 1)d and F j(0+) ∈ [−ǫ, 0) + jd. Thus,

d(F j−1(0+)) = (jd−1)−((j−1)d−1) = d. Finally, if Kj−1Kj = LR then F j−1(0) ∈ (0, h(c+))+

(j − 1)d, F j(0) ∈ [−ǫ, 0) + jd. Therefore, d(F j−1(0+)) = (jd − 1) − (j − 1)d = d − 1. From the

definition of ⋆ǫ we have that ÎF (0+) = dM ⋆ǫ K. Statement (b) follows in a similar way.

3.2.5 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1. We only will prove Theorem 3.2.1 for ⋆ǫ. The proof for ⋆δ follows in

a similar way. Let γ = βdM ∈ Pǫ and K ∈ K. We only will prove the statement in the case

β even. The case β odd follows analogously. First we are going to prove that γ ⋆ǫ K ∈ Eǫ.

If β is empty then this follows from Proposition 3.2.6(a), the definition of Eǫ and Theorem

2.3.2. Assume now that β is not empty. We note that γ ⋆ǫ L∞ = (βdL)∞ and γ ⋆ǫ R∞ =

β(d−1)R(β′(d−1)R)∞. Since βdM ∈ Pǫ these two sequences belong to Eǫ and we are done. Thus

we can assume that K /∈ {L∞, R∞}. From Collet and Eckmann [9] we have that K = RL . . . .

Let β = β1β2 . . . βn−1, K = K1K2 . . . and j = nm with m ≥ 0. Then we have γ ⋆ǫ K =

βϕ(K1, d)χ(K1, β)ϕ(K2, d)χ(K2, β) . . . . It is not difficult to see that, since K is maximal, then

ϕ(K1, d)ϕ(K2, d) . . . ∈ AD is minimal. Therefore, if Km−1 = L then

Sj(γ ⋆ǫ K) = βϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . . ≥ γ ⋆ǫ K.
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Otherwise,

Sj(γ ⋆ǫ K) = β′ϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . . ≥ (γ ⋆ǫ K)′

and, by Theorem 3.1.1(a), we are done. So, take now j = nm + p with m ≥ 0, 1 ≤ p < n. Then

we have to compare

Sj(γ ⋆ǫ K) = βp+1 . . . βn−1ϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . . =

υϕ(Km, d)χ(Km, β)ϕ(Km+1, d) . . . ,
(3.2.1)

with

γ ⋆ǫ K = β1 . . . βn−p−1βn−p . . . βn−1ϕ(K1, d) . . . =

υβn−p . . . βn−1ϕ(K1, d) . . . .
(3.2.2)

Set

υ∗ =





υ if βp = tL

υ′ if βp = tR

where t ∈ Z and (γ ⋆ǫ K)∗ = υ∗βn−p . . . βn−1ϕ(K1, d) . . . . By Theorem 3.1.1(a) we have to show

that Sj(γ ⋆ǫ K) ≥ (γ ⋆ǫ K)∗. Since βdM ∈ Pǫ, β(d − 1)R(β′(d − 1)R)∞, (βdL)∞ ∈ Eǫ. Therefore,

by Theorem 3.1.1(a) and Lemma 3.2.4(a), for all 1 ≤ p < n, we have

υ(d − 1)R(β′(d − 1)R)∞ ≥ υ∗βn−p . . . βn−1(d − 1)R(β′(d − 1)R)∞ (3.2.3)

and

υdL(βdL)∞ > υ∗βn−p . . . βn−1d
L(βdL)∞. (3.2.4)

Clearly if υ 6= υ∗ then Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗ and we are done. So assume that υ = υ∗. First

we consider the case υ even. If ϕ(Km, d) = dL then either dL > βn−p and, from (3.2.1) and

(3.2.2), we see that Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗ or dL = βn−p. In the latter, since υdL is even, from

(3.2.4) we have that

(βdL)∞ > βn−p+1 . . . βn−1d
L(βdL)∞;

a contradiction with Lemma 3.2.4(a). Now, let ϕ(Km, d) = (d − 1)R. From (3.2.3) we have

βn−p ≤ (d − 1)R. If βn−p < (d − 1)R, then Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗ by (3.2.1) and (3.2.2). So,

assume that βn−p = (d − 1)R. Then υ(d − 1)R = υ∗(d − 1)R is odd and, from (3.2.3), we have
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that

(β′(d − 1)R)∞ ≤ βn−p+1 . . . βn−1(d − 1)R(β′(d − 1)R)∞.

We note that Sn−p((β′(d − 1)R)∞) = (βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−p)

∞. Therefore, if

β′
1β2 . . . βn−1(d − 1)R = βn−p+1 . . . βn−1(d − 1)Rβ′

1 . . . βn−p

then, Sn−p((β′(d − 1)R)∞) = (β′(d − 1)R)∞ which is a contradiction by Lemma 3.2.3(a). In

consequence,

β′
1β2 . . . βn−1(d − 1)R < βn−p+1 . . . βn−1(d − 1)Rβ′

1 . . . βn−p (3.2.5)

and, by (3.2.1) and (3.2.2), Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗ if ϕ(Km+1, d) = (d − 1)R (recall that

ϕ(K1, d) = (d − 1)R). Now, assume that ϕ(Km+1, d) = dL. If

β′
1β2 . . . βn−1 < βn−p+1 . . . βn−1(d − 1)Rβ′

1 . . . βn−p−1

then we also have Sj(γ ⋆ǫ K) > (γ ⋆ǫ K)∗. Otherwise, since β′ is even, from (3.2.5) we have that

β′
1β2 . . . βn−1 = βn−p+1 . . . βn−1(d − 1)Rβ′

1 . . . βn−p−1

and βn−p ≥ dL. If βn−p > dL then the statement follows as before. Hence, βn−p = dL and so

β′
1β2 . . . βn−1d

L = βn−p+1 . . . βn−1(d − 1)Rβ′
1 . . . βn−p−1βn−p.

This is a contradiction because the left hand side of the above equation has different parity that

the right hand side. The case υ odd is handled by analogy. This ends the proof of the first

statement of the theorem.

Now, we are going to prove that γ⋆ǫ is order reversing. Let K,K ′ ∈ K be such that K < K ′.

Set K = K1K2 . . . and K ′ = K ′
1K

′
2 . . . . Then there exists n ≥ 1 such that K1 . . . Kn−1 =

K ′
1 . . . K ′

n−1 and Kn < K ′
n if K1 . . . Kn−1 is even and Kn > K ′

n if K1 . . . Kn−1 is odd. We will

only consider the case K1 . . . Kn−1 even. The proof in the case odd follows similarly. Then

we have Kn = L < R = K ′
n. Assume that β is not the empty sequence. Then γ ⋆ǫ K =

βdK1
1 χ(K1, β)dK2

2 . . . χ(Kn−1, β)dKn
n . . . and γ ⋆ǫ K ′ = βt

K ′

1
1 χ(K1, β)t

K ′

2
2 . . . χ(Kn−1, β)t

K ′

n
n . . . .
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Then

βdK1
1 χ(K1, β)dK2

2 . . . χ(Kn−1, β) = βt
K ′

1
1 χ(K1, β)t

K ′

2
2 . . . χ(Kn−1, β),

dKn
n = dL, t

K ′

n
n = (d − 1)R and βds1

1 χ(K1, β)ds2
2 . . . χ(Kn−1, β) is even. Then, clearly, γ ⋆ǫ K ′ <

γ ⋆ǫ K. Now, assume that β is the empty sequence. Then γ ⋆ǫ K = dK1
1 . . . d

Kn−1

n−1 dKn
n . . . and

γ ⋆ǫ K ′ = t
K ′

1
1 . . . t

K ′

n−1

n−1 t
K ′

n
n . . . = dK1

1 . . . d
Kn−1

n−1 t
K ′

n
n . . . and the result follows as in the case β

not empty. From the assumptions only one of the following two possibilities can occur: either

Kn−1Kn = RL and K ′
n−1K

′
n = RR, or Kn−1Kn = LL and K ′

n−1K
′
n = LR. Assume that

Kn−1Kn = RL and K ′
n−1K

′
n = RR. Then dKn

n = (d + 1)L and t
K ′

n
n = dR and γ ⋆ǫ K ′ < γ ⋆ǫ K.

Now, let Kn−1Kn = LL and K ′
n−1K

′
n = LR. Then dKn

n = dL and t
K ′

n
n = (d − 1)R and also,

γ ⋆ǫ K ′ < γ ⋆ǫ K. This concludes the proof of the second statement.

The third statement follows from Theorem II.2.7 of [9].

3.2.6 Concluding remarks

In the preceding section we have shown that the unimodal boxes γ ⋆ǫK and γ ⋆δK are connected.

However, the topological structure of the spaces

Eǫ(γ) = γ ⋆ǫ K × Eδ

(respectively

Eδ(γ) = Eǫ × γ ⋆δ K

is much more complicated. We illustrate this fact with the following examples. Let γ =

0L1M . Then γ ⋆ǫ L∞ = (0L1L)∞ and γ ⋆ǫ RL∞ = 0L0R1L1L(0L1L)∞. Therefore, γ ⋆ǫ K =

[(0L1L)∞, 0L0R1L1L(0L1L)∞].

Example 1: the space Eǫ(γ) contains “accumulating” holes in E consisting of “horizontal

lines”. Let α = (3L)∞ ∈ Eδ. Clearly [γ ⋆ǫ RL∞, γ ⋆ǫ L∞] × {α} ⊂ E∗ ⊂ E . Let now αn =

(3L)n(−1L)∞ ∈ Eδ. Then αn < αn+1 < α for all n ∈ N. Since Sn−1(αn) = (−1L)∞ < ω for

all ω ∈ γ ⋆ǫ K we have that for all n ∈ N, [γ ⋆ǫ RL∞, γ ⋆ǫ L∞] × {αn} /∈ E . We also note that

d(αn, α) tends to 0 as n → ∞.

Example 2: the ‘accumulating” holes in E consisting of “horizontal lines” are intertwine

with “horizontal lines” inside E. Let β
n

= (3L)n(2L)∞ ∈ Eδ. Then for all n ∈ N, [γ ⋆ǫ RL∞, γ ⋆ǫ
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L∞] × {β
n
} ⊂ E but d(αn, β

n
) =

∑∞
i=n+1

1
2i = 1

2n which tends to 0 when n → ∞.

Example 3: there exists “rectangles” in E ∩ (γ ⋆ǫ K×β ⋆δ K). Let β = 3M . Then β ⋆δ L∞ =

(3L)∞ and β ⋆δ RL∞ = 3R(3L)∞. It is not difficult to see that [γ ⋆ǫ RL∞, γ ⋆ǫ L∞]× [β ⋆δ L∞, β ⋆δ

RL∞] ⊂ E .

3.3 The ⊙−product

3.3.1 Introduction and preliminary results

In this section we shall study the structure of certain subsets of E , the space of kneading pairs,

in order to explain the structure of the bifurcations of “canonical” families of maps from A, like

the standard maps family.

Let k ∈ Z. We denote by Σk the set of sequences in {kL, (k + 1)L}N. Let α = dL
1 dL

2 . . .

and β = tL1 tL2 . . . be two sequences in Σk. We consider in Σk the topology defined by the metric

d(α, β) =
∞∑
i=0

2−i|di − ti|. With this topology, Σk is a compact metric space. Let Sk : Σk −→ Σk

denote the usual shift transformation restricted to Σk. Clearly, Sk is continuous. Let πk : Σk −→
Σ0 be the order preserving homeomorphism defined by πk(d

L
1 dL

2 . . .) = (d1 − k)L(d2 − k)L . . . .

Clearly, S0 ◦ πk = πk ◦ Sk.

For k ∈ Z we define the sets Bǫ(k) = Σk∩Eǫ and Bδ(k) = Σk∩Eδ. We note that the sets Eǫ and

Eδ are invariant under “translations”. That is, if ds1
1 ds2

2 . . . is a sequence in Eǫ (respectively in Eδ)

then (d1 + k)s1(d2 + k)s2 . . . also belongs to Eǫ (respectively Eδ). Therefore, Bǫ(k) = π−1
k (Bǫ(0))

and Bδ(k) = π−1
k (Bδ(0)). From Theorem 3.1.1 we have that Bǫ(k) (respectively Bδ(k)) are the

minimal (respectively maximal) sequences in Σk.

For a ∈ R we will denote a − Ẽ(a) by D̃(a). Also, Q \ Z will be denoted by Q∗.

We note that from Lemma 2.3.3, if a ∈ Q∗ and a = p/q with (p, q) = 1 and q 6= 2 then the

finite sequences ǫ2(a)L . . . ǫq−1(a)L and δ2(a)L . . . δq−1(a)L are equal. We will denote this finite

sequence by r(a) (we take as r(1/2) the empty sequence).

Now we are ready to define the ⊙−products.

For α = dL with d ∈ {0, 1} we set α̂ = (1− d)L. Then for a ∈ (0, 1] and α = α1α2 . . . ∈ Bǫ(0)
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we define

a ⊙ǫ α =





0Lr(a)α1α̂1r(a)α2α̂2 . . . if a ∈ Q∗,

Îǫ(a) if a /∈ Q∗ and α = (1L)∞,

Î
∗
δ(a) if a /∈ Q∗ and α 6= (1L)∞.

We extend the above definition to each a ∈ R by setting a ⊙ǫ α = π−1

Ẽ(a)
(D̃(a) ⊙ǫ α).

Now, we define the version ⊙δ of the ⊙−product as follows. Let a ∈ [0, 1) and α = α1α2 . . . ∈
Bδ(0). Then we set

a ⊙δ α =





1Lr(a)α1α̂1r(a)α2α̂2 . . . if a ∈ Q∗,

Îδ(a) if a /∈ Q∗ and α = (0L)∞,

Î
∗
ǫ(a) if a /∈ Q and α 6= (0L)∞,

and we extend the above definition to each a ∈ R by a ⊙δ α = π−1
E(a)(D(a) ⊙δ α).

The next result which we will be proved in Subsection 3.3.2 gives a first motivation to the

⊙−products.

Proposition 3.3.1 Let a ∈ R. Then a⊙ǫ(0
L)∞ = Î

∗
δ(a), a⊙ǫ(1

L)∞ = Îǫ(a), a⊙δ (0
L)∞ = Îδ(a)

and a ⊙δ (1L)∞ = Î
∗
ǫ(a).

From the above proposition we see that Theorem 2.3.4 can be written as.

Theorem 3.3.2 Let F ∈ A and let a, b ∈ R with a ≤ b. Then LF = [a, b] if and only if

ÎF (0+) ∈ [a ⊙ǫ (0L)∞, a ⊙ǫ (1L)∞] and ÎF (c−F ) ∈ [a ⊙δ (0L)∞, a ⊙δ (1L)∞].

The next result is the main result of this section. It studies the ⊙−products and will allow

us to describe bifurcations of logistic families of maps from A.

For α ∈ Σk, α = dL
1 dL

2 . . . we define the symbolic rotation number of α as

ρ(α) = lim sup
n→∞

1

n

n∑

i=1

di.

Theorem 3.3.3 Let a, b ∈ R with a ≤ b. Then the following statements hold:

(a) Let α, β ∈ Bǫ(0) with α < β. Then a⊙ǫα ≤ b⊙ǫβ. Moreover if a ∈ Q∗ then a⊙ǫα < a⊙ǫβ.

(b) Let α, β ∈ Bδ(0) with α < β. Then a⊙δα ≤ b⊙δβ. Moreover if a ∈ Q∗ then a⊙δα < a⊙δβ.
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(c) Let α ∈ Bǫ(0). Then a ⊙ǫ α ∈ Eǫ and ρ(a ⊙ǫ α) = a.

(d) Let α ∈ Bδ(0). Then a ⊙δ α ∈ Eδ and ρ(a ⊙ǫ α) = a.

(e) Let a ∈ Q∗ and (α, β) ∈ Bǫ(0)×Bδ(0) be such that α 6= (1L)∞ and β 6= (0L)∞. If Sn(α) ≤ β

and Sn(β) ≥ α for all n ≥ 0, then (a ⊙ǫ α, a ⊙δ β) ∈ E∗ ⊂ E .

We note that if (α, β) ∈ E , by Theorem 2.3.2 and Proposition 2.3.1 we have that α′ ≤ β,

Sn(α) ≤ β and Sn(β) ≥ α for all n ≥ 0. Thus from Theorem 3.3.3(e) we have the following.

Corollary 3.3.4 Let a ∈ Q∗ and let (α, β) ∈ (Bǫ(0) × Bδ(0)) ∩ E be such that α 6= (1L)∞ and

β 6= (0L)∞. Then (a ⊙ǫ α, a ⊙δ β) ∈ E∗ ⊂ E .

We will prove Theorem 3.3.3 in Subsection 3.3.3.

3.3.2 Definitions and preliminary results

We start by introducing some technical results about the sequences Î
∗
δ(a), Îǫ(a), Îδ(a) and Î

∗
ǫ (a).

The following lemma is due to Alsedà and Mañosas [5].

Lemma 3.3.5 The following statements hold:

(a) If a = p/q with (p, q) = 1 then Îǫ(a) and Îδ(a) are periodic with period q (i.e. Sq(Îǫ(a)) =

Îǫ(a) and Sq(Îδ(a)) = Îδ(a)).

(b) Let a, b ∈ R with a < b. Then Îǫ(a) < Îǫ(b), Îδ(a) < Îδ(b), Î
∗
ǫ(a) < Î

∗
ǫ (b) and Î

∗
δ(a) <

Î
∗
δ(b).

From Theorem 2.3.2 and Theorem 3.1.1 we have the following.

Lemma 3.3.6 Let a ∈ R. Then Î
∗
δ(a), Îǫ(a) ∈ Eǫ are minimal and Îδ(a), Î

∗
ǫ (a) ∈ Eδ are maxi-

mal.

Lemma 3.3.7 Let a ∈ R. Then ǫ1(a) ≤ ǫi(a) ≤ ǫ1(a) + 1 and δ1(a) − 1 ≤ δi(a) ≤ δ1(a) for all

i ≥ 1.

Proof. We recall that ǫi(a) = E(ia) − E((i − 1)a) = E(a + (i − 1)a) − E((i − 1)a). Then,

from the fact that E(x) + E(y) ≤ E(x + y) ≤ E(x) + E(y) + 1 for all x, y ∈ R, we have that

ǫ1(a) ≤ ǫi(a) ≤ ǫ1(a)+1 for all i ≥ 1. In a similar way we can prove that δ1(a)−1 ≤ δi(a) ≤ δ1(a)

for all i ≥ 1.
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Lemma 3.3.8 Let a ∈ R. Then Îǫ(a), Î
∗
δ(a) ∈ Σ

Ẽ(a)
and Îδ(a), Î

∗
ǫ(a) ∈ ΣE(a).

Proof. From Lemmas 3.3.5(a) and 2.3.3, the fact that ǫ1(a) = δ1(a)− 1 = E(a) = Ẽ(a) if a /∈ Z

and Lemma 3.3.7 the statement follows when a /∈ Z. If a ∈ Z, then from Lemma 2.3.11 we have

that Îǫ(a) = Îδ(a) = (aL)∞, Î
∗
ǫ(a) = (a + 1)L(aL)∞ and Î

∗
δ(a) = (a− 1)L(aL)∞. Since E(a) = a

and Ẽ(a) = a − 1 the statement follows also in this case.

Then we have the following corollary which will be useful in the next section.

Corollary 3.3.9 Let a ∈ R. Then Îǫ(a), Î
∗
δ(a) ∈ Bǫ(Ẽ(a)) and Îδ(a), Î

∗
ǫ(a) ∈ Bδ(E(a))).

Proof. It follows from Lemmas 3.3.8 and 3.3.6.

Corollary 3.3.10 Let a ∈ R. Then Îǫ(a) = π−1

Ẽ(a)
(Îǫ(D̃(a))), Î

∗
δ(a) = π−1

Ẽ(a)
(Î

∗
δ(D̃(a))), Îδ(a) =

π−1
E(a)(Îδ(D(a))) and Î

∗
ǫ(a) = π−1

E(a)(Î
∗
ǫ(D(a))).

Proof. Let a ∈ R. Then

ǫi(a) = E(ia) − E((i − 1)a)

= E(i(D(a) + E(a))) − E((i − 1)(D(a) + E(a))))

= E(iD(a)) + iE(a) − E((i − 1)D(a)) − (i − 1)E(a)

= E(iD(a)) − E((i − 1)D(a)) + E(a)

= ǫi(D(a)) + E(a).

If a /∈ Z, since Ẽ(a) = E(a) and D̃(a) = D(a) we have that Îǫ(a) = π−1

Ẽ(a)
(Îǫ(D̃(a))). Oth-

erwise, by Lemma 2.3.11, Îǫ(a) = (E(a)L)∞ and since D̃(a) = 1 and Ẽ(a) = E(a) − 1 we

get Îǫ(a) = π−1

Ẽ(a)
(Îǫ(D̃(a))). Also, Î

∗
ǫ(a) = π−1

E(a)(Î
∗
ǫ (D(a))) if a /∈ Z. Otherwise, Î

∗
ǫ(a) =

(E(a) + 1)L(E(a)L)∞ = π−1
E(a)(Î

∗
ǫ(D(a))). The other two cases follow in a similar way.

Lemma 3.3.11 Let a ∈ Q∗ be with (p, q) = 1. Then ǫq(a) = ǫ1(a) + 1.

Proof. If ǫq(a) 6= ǫ1(a) + 1 then, by Lemma 3.3.7, we can assume that ǫq(a) = ǫ1(a). Then by

Lemma 3.3.5(a), Îǫ(a) = (ǫ1(a)Lr(a)ǫ1(a)L)∞. By Lemma 3.3.6, Sq−1(Îǫ(a)) = (ǫ1(a)Lǫ1(a)Lr(a))∞ ≥
Îǫ(a). Thus, by Lemma 3.3.7, ǫ2(a) = ǫ1(a) and, proceeding inductively, we obtain that

Îǫ(a) = (ǫ1(a)L)∞; a contradiction by Lemma 3.3.5(a).
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Remark 3.3.12 In view of Lemmas 2.3.3 and 3.3.11, for a ∈ Q∗, we can write

Î
∗
δ(a) = ǫ1(a)Lr(a)(ǫ1(a)L(ǫ1(a) + 1)Lr(a))∞,

Îǫ(a) = (ǫ1(a)Lr(a)(ǫ1(a) + 1)L)∞,

Îδ(a) = ((ǫ1(a) + 1))Lr(a)ǫ1(a)L)∞,

Î
∗
ǫ(a) = (ǫ1(a) + 1)Lr(a)((ǫ1(a) + 1)Lǫ1(a)Lr(a))∞.

2

The above observation already allow us to prove Proposition 3.3.1.

Proof of proposition

Proof. We will only prove that a ⊙ǫ (1L)∞ = Îǫ(a). The proof of the other three statements

follows similarly. From Corollary 3.3.10 and the definition of ⊙ǫ we can assume that a ∈ (0, 1].

Now, the statement follows directly from the definitions if a /∈ Q∗. If a ∈ Q∗ the statement

follows from Remark 3.3.12 and the fact that ǫ1(a) = 0.

3.3.3 Proof of the Theorem 3.3.3

We start with a technical lemma.

Lemma 3.3.13 Let a = p/q ∈ Q∗ be with (p, q) = 1, Then

(a) ǫ1(a)L(ǫ1(a) + 1)Lr(a) > ǫ1(a)Lr(a)ǫ1(a)L.

(b) For 1 < j ≤ q − 1 we have that

ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L > ǫ1(a)Lr(a)ǫ1(a)L

and

ǫj(a)L . . . ǫq−1(a)L(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L > ǫ1(a)Lr(a)(ǫ1(a) + 1)L

(c) (ǫ1(a) + 1)Lǫ1(a)Lr(a) < (ǫ1(a) + 1)Lr(a)(ǫ1(a) + 1)L.

(d) For 1 < j ≤ q − 1 we have that

ǫj(a)L . . . ǫq−1(a)L(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L < (ǫ1(a) + 1)Lr(a)(ǫ1(a) + 1)L
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and

ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L < (ǫ1(a) + 1)Lr(a)ǫ1(a)L

Proof. Since, by Remark 3.3.12 and Lemma 3.3.6,

Î
∗
δ(a) = ǫ1(a)Lr(a)(ǫ1(a)L(ǫ1(a) + 1)Lr(a))∞

and is a minimal sequence we have

ǫ1(a)L(ǫ1(a) + 1)Lr(a) ≥ ǫ1(a)Lr(a)ǫ1(a)L.

If

ǫ1(a)L(ǫ1(a) + 1)Lr(a) = ǫ1(a)Lr(a)ǫ1(a)L,

then

Î
∗
δ(a) = ǫ1(a)Lr(a)ǫ1(a)L(ǫ1(a) + 1)L . . . >

ǫ1(a)L(ǫ1(a) + 1)Lr(a)ǫ1(a)L . . . = Sq−1(Î
∗
δ(a));

a contradiction with the minimality of Î
∗
δ(a). This ends the proof of (a). Now, we prove (b).

Again by the minimality of Î
∗
δ(a), for 1 < j ≤ q − 1 we have

ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L ≥ ǫ1(a)Lr(a)ǫ1(a)L.

If in the above inequality the equality holds, we have

Sj−1(Î
∗
δ(a)) = ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)Lǫj(a)L . . .

= ǫ1(a)Lr(a)ǫ1(a)Lǫ1(a)L . . . < ǫ1(a)Lr(a)ǫ1(a)L(ǫ1(a) + 1)Lr(a) . . . = Î
∗
δ(a);

a contradiction. Hence,

ǫj(a)L . . . ǫq−1(a)Lǫ1(a)L(ǫ1(a) + 1)Lǫ2(a)L . . . ǫj−1(a)L > ǫ1(a)Lr(a)ǫ1(a)L.
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Now, we prove the second part of statement (b). Since by Remark 3.3.12 and Lemma 3.3.6

Îǫ(a) = (ǫ1(a)Lr(a)(ǫ1(a) + 1)L)∞

is a periodic minimal sequence of period q then for 1 < j ≤ q−1 we have that Sj−1(Îǫ(a)) > Îǫ(a).

Thus

ǫj(a)L . . . ǫq−1(a)L(ǫ1(a) + 1)Lǫ1(a)Lǫ2(a)L . . . ǫj−1(a)L > ǫ1(a)Lr(a)(ǫ1(a) + 1)L.

Otherwise, the equality holds and so Sj−1(Îǫ(a)) = Îǫ(a) with j < q; a contradiction. This

concludes the proof of statement (b). By using the sequences Î
∗
ǫ(a) and Îδ(a) instead of Î

∗
δ(a)

and Îǫ(a) statements (c) and (d) follow in a similar way.

Proof of Theorem 3.3.3. We start by proving (a). Assume that Ẽ(a) = k < Ẽ(b). From the

definition of ⊙ǫ it follows that a ⊙ǫ α ∈ Σk and a ⊙ǫ β ∈ Σ
Ẽ(b)

. Then, if a ⊙ǫ α = kL . . . ,

clearly, a ⊙ǫ α < a ⊙ǫ β. If a ⊙ǫ α = (k + 1)L . . . then, from the definition of ⊙ǫ it follows that

a /∈ Q∗. Moreover, from the definition of Îǫ(a) and Î
∗
δ(a) (see also Lemma 2.3.11) it follows

that a = k + 1 and a ⊙ǫ α = Îǫ(k + 1) = ((k + 1)L)∞. Clearly, ((k + 1)L)∞ < γ for each

γ ∈ Σm with m > k. This proves statement (a) in this case. So, assume that Ẽ(a) = Ẽ(b).

By the definition of ⊙ǫ, Corollary 3.3.10 and the fact that π
Ẽ(a)

is order preserving we may

assume that Ẽ(a) = Ẽ(b) = 0 (that is, a, b ∈ (0, 1]). We consider first the case a = b. If a /∈ Q∗

then, from Theorem 2.3.4 we have that Î
∗
δ(a) ≤ Îǫ(a). Hence, for each α ∈ Bǫ(0) \ {(1L)∞},

a ⊙ǫ α = Î
∗
δ(a) ≤ Îǫ(a) = a ⊙ǫ (1L)∞. Therefore, a ⊙ǫ α ≤ a ⊙ǫ β for each α, β ∈ Bǫ(0). Take

now a ∈ Q∗and set α = α1α2 . . . and β = β1β2 . . . . Since α < β, there exists k ≥ 1 such that

α1 . . . αk−1 = β1 . . . βk−1 and αk < βk. Then a ⊙ǫ α < a ⊙ǫ β directly from the definition. This

ends the proof of statement (a) in the case a = b. We note that in particular, from Proposition

3.3.1, we have proved that

Î
∗
δ(a) = a ⊙ǫ (0L)∞ ≤ a ⊙ǫ α ≤ a ⊙ǫ (1L)∞ = Îǫ(a)

for each α ∈ Bǫ(0). Now we assume that a 6= b. Take c ∈ (a, b) irrational. Then since Îǫ(c) = Î
∗
δ(c)

(see Lemma 2.3.3), from Lemma 3.3.5(b) we get that Îǫ(a) < Îǫ(c) = Î
∗
δ(c) < Î

∗
δ(b). So, from
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above we have

a ⊙ǫ α ≤ Îǫ(a) < Î
∗
δ(b) ≤ b ⊙ǫ β.

This concludes the proof of statement (a). Statement (b) follows in a similar way.

Now, we prove the first statement of (c). Without loss of generality we may assume that

a ∈ (0, 1]. If a /∈ Q∗ then the statement follows from the definition of ⊙ǫ and Lemma 3.3.6.

Now, assume that a ∈ Q∗. From Proposition 3.3.2 and Lemma 3.3.6 we also have that a ⊙ǫ

(0L)∞, a ⊙ǫ (1L)∞ ∈ Bǫ(0) ⊂ Eǫ. Therefore, we may assume that α /∈
{
(0L)∞, (1L)∞

}
. Since α

is minimal, we have α = 0L . . . . Indeed, otherwise we have Sn(α) ≥ α = 1L . . . for each n ≥ 0.

Hence α = (1L)∞; a contradiction. Consequently, a ⊙ǫ α = 0Lr(a)0L1L . . . . To end the proof

of the first statement of (c) we have to prove that Sj(a ⊙ǫ α) ≥ a ⊙ǫ α for each j ≥ 1. Let

α = α1α2 . . . and a = p/q with (p, q) = 1 and m ≥ 1. Then

Sqm(a ⊙ǫ α) = α̂mr(a)αm+1α̂m+1 . . . .

If αm = 1L, then α̂m = 0L and, since α is minimal, we have Sqm(α ⊙ǫ a) ≥ a ⊙ǫ α. If αm = 0L

and α̂m = 1L then clearly, we are done. Now we look at

Smq−1(a ⊙ǫ α) = αmα̂mr(a)αm+1α̂m+1 . . . .

If αm = 1L, obviously Smq−1(α⊙ǫ a) ≥ a⊙ǫ α. Assume that αm = 0L. Then αmα̂m = 0L1L and

the desired inequality follows from Lemma 3.3.13(a) (recall that we are assuming that a ∈ (0, 1]

and a ∈ Q∗; that is ǫ1(a) = 0). Now, assume that 1 < j ≤ q − 1. Then

S(m−1)q+j−1(a ⊙ǫ α) = ǫj(a)L . . . ǫq−1(a)Lαmα̂m . . .

and, from Lemma 3.3.13(b), we get S(m−1)q+j−1(α ⊙ǫ a) ≥ a ⊙ǫ α. This ends the proof of the

first statement of (c). The fact that ρ(α⊙ǫ a) = a follows straighfordwardly from the definition

of ⊙ǫ and the fact that ρ(Îǫ(a)) = ρ(Î
∗
δ(a)) = a. This ends the proof of (c). Statement (d)

follows in a similar way.
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Now, we prove (e). Assume that a = p/q with (p, q) = 1 and set α = α1α2 . . . and β =

β1β2 . . . . Since a ∈ Q∗ we have that E(a) = Ẽ(a) = ǫ1(a). Hence,

a ⊙ǫ α = ǫ1(a)Lr(a)α1α̂1r(a)α2α̂2 . . .

and

a ⊙δ β = (ǫ1(a) + 1)Lr(a)β1β̂1r(a)β2β̂2 . . . .

Since α 6= (1L)∞ and is minimal and β 6= (0L)∞ and is maximal, in a similar way as before we

obtain that α = 0L . . . and β = 1L . . . . Therefore α < β and (a⊙ǫ α)′ < a⊙δ β. Moreover, since

Sn(α) ≤ β, we obtain Sn(a ⊙ǫ α) ≤ a⊙δ β in a similar way as above by using Lemma 3.3.13(c)

instead of Lemma 3.3.13(a) and Lemma 3.3.13(d) instead of Lemma 3.3.13(b). On the other

hand, from Sn(β) ≥ α and Lemma 3.3.13(a)–(b) we obtain Sn(a⊙δ β) ≥ a⊙ǫ α. Then statement

(d) follows from the definition of E∗ ⊂ E

Now we will introduce the notation that in the next section will allow us to speak about

iterated ⊙−products.

Let −→v = (v1, . . . , vn) ∈ ∏n
i=1 (0, 1] and α ∈ Bǫ(0). We note that if β ∈ Bǫ(0) then, by

Theorem 3.3.3(c) and the definition of ⊙ǫ, vi ⊙ǫ β also lies in Bǫ(0). Therefore, the sequence

v1 ⊙ǫ v2 ⊙ǫ (. . . (vn−1 ⊙ǫ (vn ⊙ǫ α)) . . .)

is well defined. We will denote it by −→v ⊙ǫ α. Now we take −→v = (v1, . . . , vn) ∈ ∏n
i=1 (k, k + 1]

with k ∈ Z and we extend the notation −→v ⊙ǫ α to this case as follows. Let D̃(−→v ) =

(D̃(v1), . . . , D̃(vn)). Then we set

−→v ⊙ǫ α = π−1
k (D̃(−→v ) ⊙ǫ α).

In a similar way let −→v = (v1, . . . , vn) ∈ ∏n
i=1 [0, 1) and α ∈ Bδ(0). Then, by using Theorem

3.3.3(d), we define

−→v ⊙δ α = v1 ⊙δ (v2 ⊙δ (. . . (vn−1 ⊙δ (vn ⊙δ α)) . . .).
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If −→v = (v1, . . . , vn) ∈ ∏n
i=1 [k, k + 1) with k ∈ Z and let D(−→v ) = (D(v1), . . . ,D(vn)). Then we

set

−→v ⊙ǫ α = π−1
k (D(−→v ) ⊙δ α).

We note that if v ∈ R then from Theorem 3.3.3(a)–(b) and Corollary 3.3.9 we have that

v ⊙ǫ Î
∗
δ(a) ≤ v ⊙ǫ Îǫ(a) and v ⊙δ Îδ(a) ≤ v ⊙δ Î

∗
ǫ (a) for all a ∈ (0, 1). Therefore we can consider

the following two closed intervals [v ⊙ǫ Î
∗
δ(a), v ⊙ǫ Îǫ(a)] ⊂ Eǫ and [v ⊙δ Îδ(a), v ⊙δ Î

∗
ǫ(a)] ⊂ Eδ.

Additionally we can define recursively the following set of intervals.

Let −→v = (v1, . . . , vn) ∈ ∏n
i=1 (0, 1] ∩Q∗ and a ∈ (0, 1]. Then the interval

[−→v ⊙ǫ Î
∗
δ(a),−→v ⊙ǫ Îǫ(a)]

in Eǫ will be denoted by Qǫ(a,−→v ). If −→v = (v1, . . . , vn) ∈ ∏n
i=1(k, k + 1] ∩ Q∗ and a ∈ (k, k + 1]

with k ∈ Z, then we denote the interval

[π−1
k (D̃(−→v ) ⊙ǫ Î

∗
δ(D̃(a))), π−1

k (D̃(−→v ) ⊙ǫ Îǫ(D̃(a)))]

in Eǫ by Qǫ(a,−→v ).

In a similar way let −→v = (v1, . . . , vn) ∈ ∏n
i=1[0, 1) ∩ Q∗ and a ∈ [0, 1). Then we denote the

interval

[−→v ⊙δ Îδ(a),−→v ⊙δ Î
∗
ǫ(a)] ⊂ Eδ

by Qδ(a,−→v ). If −→v = (v1, . . . , vn) ∈ ∏n
i=1[k, k + 1) ∩ Q∗ and a ∈ [k, k + 1) with k ∈ Z, then we

denote the interval

[π−1
k (D̃(−→v ) ⊙δ Îδ(D̃(a))), π−1

k (D̃(−→v ) ⊙δ Îδ(D̃(a)))] ⊂ Eδ

by Qδ(a,−→v ).

3.4 Bifurcation structure in the Arnol’d tongues

In this section we will use the products defined in the previous two sections to describe the

internal structure of the “boxes” Qǫ(a) and Qδ(a). In particular this gives the structure of

the symbolic Arnol’d tongues. To do it we will use the unimodal boxes of sequences of the
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form a ⊙ǫ α and a ⊙δ α. We recall that in Subsection 3.2.3 we have defined the unimodal box

of a periodic sequence γ from Pǫ (respectively Pδ) as γ ⋆ǫ K = γ ⋆ǫ [L∞, RL∞] (respectively

γ ⋆δ K = γ ⋆δ [L∞, RL∞]).Thus, in order that the unimodal boxes of a ⊙ǫ α and a ⊙δ α are

defined it is necessary that these sequences are periodic. The next result characterizes the

periodic sequences of the form a ⊙ǫ α and a ⊙δ α. It will be proved in Subsection 3.4.1.

Proposition 3.4.1 Let a ∈ R. The following statements hold.

(a) Let α ∈ Bǫ(0) \ {(0L)∞} be periodic. If a /∈ Q then a ⊙ǫ α is not periodic. If a ∈ Z then

a⊙ǫ α is periodic if and only if α = (1L)∞. Moreover, aM ∈ Pǫ and a⊙ǫ (1
L)∞ = aM ⋆ǫ L

∞.

If a ∈ Q∗ then a ⊙ǫ α is periodic. Moreover, there exists βdM ∈ Pǫ such that a ⊙ǫ α =

βdM ⋆ǫ L∞.

(b) Let α ∈ Bδ(0)\{(1L)∞} be periodic. If a /∈ Q then a ⊙δ α is not periodic. If a ∈ Z then

a⊙δ α is periodic if and only if α = (0L)∞. Moreover, aC ∈ Pδ and a⊙δ (0L)∞ = aC ⋆δ L∞.

If a ∈ Q∗ then a ⊙δ α is periodic. Moreover, there exists βdC ∈ Pδ such that a ⊙δ α =

βdC ⋆δ L∞.

Now we can define the unimodal box of a sequence of the form a ⊙ǫ α as follows. Let a ∈ Q

and α ∈ Bǫ(0) \ {(0L)∞} be periodic. Then, with the notation of Proposition 3.4.1(a), we set

Uǫ(a ⊙ǫ α) =





βdM ⋆ǫ K if a ∈ Q∗,

aM ⋆ǫ K if a ∈ Z and α = (1L)∞.

Let now α ∈ Bδ(0)\{(1L)∞} be periodic. With the notation of Proposition 3.4.1(b), we set

Uδ(a ⊙δ α) =





βdC ⋆δ K if a ∈ Q∗,

aC ⋆δ K if a ∈ Z and α = (0L)∞.

The next theorem already gives a first approximation to the symbolic structure of the “boxes”

Qǫ(a) and Qδ(a) (and hence to Eǫ and Eδ). It will be proved in Subsection 3.4.2

Theorem 3.4.2 Let a ∈ R. Then the following statements hold.

(a) If a /∈ Q then Qǫ(a) = {Îδ(a)}.

(b) If a ∈ Z then Qǫ(a) ⊃ Uǫ(Îǫ(a)).
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(c) If a ∈ Q∗ then Qǫ(a) = {Î∗δ(a)} ∪ (∪
c∈(Ẽ(a),Ẽ(a)+1]

Qǫ(c, a)). Moreover if c < c′ then

for each α ∈ Qǫ(c, a) and β ∈ Qǫ(c
′, a) we have that α < β.

(d) If a /∈ Q then Qδ(a) = {Îδ(a)}.

(e) If a ∈ Z then Qδ(a) ⊃ Uδ(Îδ(a)).

(f) If a ∈ Q∗ then Qδ(a) = {Î∗ǫ(a)} ∪ (∪c∈[E(a),E(a)+1)Qδ(c, a)). Moreover if c < c′ then

for each α ∈ Qδ(c, a) and β ∈ Qδ(c
′, a) we have that α < β.

The iterative use of Theorem 3.4.2 already gives the full structure of Qǫ(a) and Qδ(a) for

a ∈ Q∗. Indeed, the structure of the “inside boxes” of the form a ⊙ǫ Qǫ(c) and a ⊙δ Qδ(c) can

be deduced from Theorem 3.4.2 and Theorem 3.3.3. Therefore, we obtain the following result

which is the main result of this chapter. It already describes the bifurcation pattern when the

sequence ÎF (0+) (respectively ÎF (c−
F
)) crosses the boxes Qǫ(a) (respectively Qδ(a)) with a ∈ Q∗

(that is, when the left (respectively right) endpoint of RF goes through a ∈ Q∗).

Theorem 3.4.3 Let F ∈ A be such that RF = [x1, y1] for some x1, y1 ∈ R. Then the following

statements hold.

(a) If x1 ∈ Q∗ and Ẽ(x1) = k then for ÎF (0+) ∈ Qǫ(x1) one and only one of the following

statements hold:

(a.1) There exists {xn}n>1 ∈ (k, k + 1] ∩ Q∗ such that ÎF (0+) ∈ Qǫ(xn,−→a n−1) for each

n ≥ 2 where −→a n−1 denotes the vector (x1, . . . , xn−1). Moreover for all n ≥ 2 we have

that Qǫ(x1) ⊃ Qǫ(xn,−→a n−1) ⊃ Qǫ(xn+1,
−→a n).

(a.2) There exist n ≥ 2 and a vector −→a n−1 = (x1, . . . , xn−1) with x2, . . . , xn ∈ (k, k + 1]

and xi ∈ Q∗ for i = 1, . . . , n − 1 such that ÎF (0+) ∈ Qǫ(xk, (x1, . . . , xk−1)) for

k = 2, 3, . . . , n − 1 and one and only one of the following statements hold:

(a.2.1) ÎF (0+) is equal to −→a n−2 ⊙ǫ Î
∗
δ(D̃(xn−1)) if n ≥ 3 and Î

∗
δ(x1) if n = 2.

(a.2.2) xn ∈ Z and ÎF (0+) ∈ Qǫ(xn,−→a n−1) ⊃ Uǫ(
−→a n−1 ⊙ǫ Îǫ(D̃(xn)).

(a.2.3) xn /∈ Q and ÎF (0+) ∈ Qǫ(xn,−→a n−1) = {−→a n−1 ⊙ǫ Îǫ(D̃(xn))}.

(b) If y1 ∈ Q∗ and Ẽ(y1) = k′ then for ÎF (c−
F
) ∈ Qδ(y1) one and only one of the following

statements hold.
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(b.1) There exists {yn}n>1 ∈ [k′, k′ + 1) ∩ Q∗ such that ÎF (c−
F
) ∈ Qδ(yn,

−→
b n−1) for each

n ≥ 2 where
−→
b n−1 denotes the vector (y1, . . . , yn−1). Moreover for all n ≥ 2 we have

Qδ(y1) ⊃ Qδ(yn,
−→
b n−1) ⊃ Qδ(yn+1,

−→
b n).

(b.2) There exist n ≥ 2 and a vector
−→
b n−1 = (y1, . . . , yn−1) with y2, . . . , yn ∈ [k, k + 1)

and yi ∈ Q∗ for i = 1, . . . , n − 1 such that ÎF (c−
F
) ∈ Qδ(yk, (y1, . . . , yk−1)) for k =

2, 3, . . . , n − 1 and one and only of the following statements hold:

(b.2.1) ÎF (c−
F
) is equal to

−→
b n−2 ⊙δ Î

∗
ǫ(D(yn−1)) if n ≥ 3 and Î

∗
ǫ (y1) if n = 2.

(b.2.2) yn ∈ Z and ÎF (c−
F
) ∈ Qδ(yn,

−→
b n−1) ⊃ Uǫ(

−→
b n−1 ⊙δ Îδ(D(yn))).

(b.2.3) yn /∈ Q and ÎF (c−
F
) ∈ Qδ(yn,

−→
b n−1) = {−→b n−1 ⊙δ Îδ(D(yn))}.

Theorem 3.4.3 will be proved in Subsection 3.4.2.

3.4.1 Proof of Proposition 3.4.1

To prove Proposition 3.4.1 we need three preliminary results. The next lemma follows easily.

Lemma 3.4.4 Let α = α1α2 . . . , β = α1β2 . . . ∈ AD be such that α < β. Then the following

statements hold.

(a) If α1 = dL then S(α) < S(β).

(b) If α1 = dR then S(α) > S(β).

The following proposition characterizes the sequences in Pǫ and Pδ.

Proposition 3.4.5 The following statements hold.

(a) Let β ∈ Ξ be such that γ = βdM is minimal satisfying that if Sj−1(γ) = dR . . . for some

j = 0, 1, . . . , |γ| − 1, then Sj(γ) ≥ γ′. Then there exists F ∈ A such that ÎF (0) = γ.

Moreover γ ∈ Pǫ.

(b) Let β ∈ Ξ be such that γ = βdC is maximal. Then there exists F ∈ A such that ÎF (c
F
) = γ.

Moreover γ ∈ Pδ.

Proof. We will prove statement (a). Statement (b) follows similarly. The strategy of the proof

will be to construct effectively a map F ∈ A such that ÎF (0) = γ. We proceed as follows. Set

γ = ds1
1 ds2

2 . . . d
sn−1

n−1 dsn
n with sn = M. Let k ∈ Z be such that max{|di| : i = 1, . . . , n} < k and

let c ∈ (0, 1). Now, for j = 0, 1, . . . n − 1, we choose points x(Sj(γ)) ∈ [0, 1) such that
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1. x(γ) = 0,

2. if for j = 1, . . . , n − 1 we have Sj−1(γ) = dL
j . . . (respectively Sj−1(γ) = dR

j . . .) then

x(Sj(γ)) ∈ (0, c) (respectively x(Sj(γ)) ∈ (c, 1)),

3. if for i 6= j, i, j ∈ {1, 2, . . . , n − 1} we have x(Si(γ)), x(Sj(γ)) ∈ [0, c) (respectively

x(Si(γ)), x(Sj(γ)) ∈ (c, 1)), then x(Si(γ)) < x(Sj(γ)) if and only if Si(γ) < Sj(γ) (respec-

tively Si(γ) > Sj(γ)).

We note that, by the minimality of γ, we have x(γ) < x(Sj(γ)) for j = 1, 2, , . . . n − 1.

Therefore we can write

x(γ) < x(Sj1(γ)) < . . . < x(Sjk(γ)) < c < x(Sjk+1(γ)) < . . . < x(Sjn−1(γ)).

Then we set j0 = 0 and we take F ∈ L such that F (c) = k, F (x(Sjt(γ)) = x(Sjt+1(γ)) + djt+1

if jt 6= n− 1, F (x(Sn−1(γ)) = dn and F is affine in [x(Sjt(γ)), x(Sjt+1(γ))] for t ∈ {0, 1, . . . , n −
1}\{k} and in [x(Sjk(γ)), c] and [c, x(Sjk+1(γ))]. Now, we claim that F ∈ A. To prove it note

that F (c) = k > F (x(Sj(γ)) for j = 0, . . . , n − 1. Then F |[x(Sjk (γ)),c] is strictly increasing and

F |
[c,x(Sjk+1(γ))]

is strictly decreasing. Let t be such that [x(Sjt(γ)), x(Sjt+1(γ))] ⊂ [0, c). We

have Sjt(γ) = d
sjt+1

jt+1 . . . < d
sjt+1+1

jt+1+1 . . . = Sjt+1(γ). If either djt+1 < djt+1+1 or djt+1 = djt+1+1

and sjt+1 < sjt+1+1, then clearly F (x(Sjt(γ))) < F (x(Sjt+1(γ))). Now, assume d
sjt+1

jt+1 = d
sjt+1+1

jt+1+1 .

From Lemma 3.4.4 we have that either Sjt+1(γ) < Sjt+1+1(γ) if sjt+1 = L or Sjt+1(γ) >

Sjt+1+1(γ) if sjt+1 = R. In both cases x(Sjt+1(γ)) < x(Sjt+1+1(γ)) and, in consequence,

F (x(Sjt(γ))) < F (x(Sjt+1(γ))). Thus F |[x(Sjt (γ)),x(Sjt+1 (γ))] is strictly increasing. In a similar

way we can prove that if [x(Sjt(γ)), x(Sjt+1(γ))] ⊂ (c, 1) then F |[x(Sjt (γ)),x(Sjt+1 (γ))] is strictly

decreasing. To end the proof of the claim we have to prove that F (x(Sjn−1(γ))) > F (1).

Since x(Sjn−1(γ)) ∈ (c, 1) we have that Sjn−1−1(γ) = dR
jn−1

. . . . Then Sjn−1(γ) > γ′. If ei-

ther djn−1+1 > (d1 + 1) or djn−1+1 = (d1 + 1) and sjn−1+1 = R > L = s1 then, since

F (1) = F (0) + 1 = x(S(γ)) + d1 + 1 and F (x(Sjn−1(γ))) = x(Sjn−1+1(γ)) + djn−1+1, we have

that F (x(Sjn−1(γ))) > F (1). On the other hand, assume that d
sjn−1+1

jn−1+1 = (d1 + 1)s1 . We obtain

that F (x(Sjn−1(γ))) > F (1) as above by using Lemma 3.4.4. This ends the proof of the claim.

Lastly, we have ÎF (0) = γ by construction. Also, from Lemma 3.2.2(a) we have that γ ∈ Pǫ.

This ends the proof of the proposition.
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The next lemma characterizes the periodic sequences in Bǫ(0) and Bδ(0).

Lemma 3.4.6 The following statements hold.

(a) Let α ∈ Bǫ(0)\{(0L)∞, (1L)∞} be periodic. Then α = (0Lβ1L)∞ for some β ∈ Ξ.

(b) Let α ∈ Bδ(0)\{(0L)∞, (1L)∞} be periodic. Then α = (1Lβ0L)∞ for some β ∈ Ξ.

Proof. Clearly α is of the form (dL
1 βdL

n)∞ with β ∈ Ξ. Assume that d1 = 1. Since α is minimal

we have that α = 1L . . . ≤ Sj(α) for all j. Then Sj(α) = 1L . . . for all j and, in consequence,

α = (1L)∞; a contradiction. Hence d1 = 0. Now, assume that dn = 0. Then α = (0Lβ0L)∞. If

β is the empty sequence then α = (0L)∞; a contradiction. Now assume that β is not the empty

sequence and set β = β2 . . . βn−1. Since α is minimal α = 0Lβ2 . . . ≤ 0L0Lβ2 . . . = Sn−1(α). Thus

β2 = 0L. Proceeding inductively we obtain that βi = 0L for i = 2, . . . , n− 1. Thus α = (0L)∞; a

contradiction. This ends the proof of (a). Statement (b) follows in a similar way.

Proof of Proposition 3.4.1. We will only prove statement (a). Statement (b) follows in a

similar way. The fact that a ⊙δ α is not periodic when a /∈ Q and when a ∈ Z is periodic

if and only if α = (1L)∞ follows from the definitions of ⊙ǫ and of the sequences Î
∗
δ(a) and

Îǫ(a). The third statement follows directly from the definitions. Now we prove the last two

statements. Assume that a ∈ Q∗. If α = (1L)∞ then a⊙ǫ α is periodic by Proposition 3.3.1 and

Lemma 3.3.5(a). Moreover if a = p/q with (p, q) = 1 then a ⊙δ α = (ǫ1(a)Lǫ2(a)L . . . ǫq(a)L)∞.

Let α ∈ Bǫ(0)\{(1L)∞}. By Lemma 3.4.6(a) we get α = (0Lα2 . . . αn−11
L)∞. Without loss of

generality assume that Ẽ(a) = 0. Then

a ⊙ǫ α = (0Lr(a)0L1Lr(a)α2 . . . r(a)αn−1α̂n−1r(a)1L)∞

is periodic. Now, let γ = 0Lr(a)0L1Lr(a)α2 . . . r(a)αn−1α̂n−1r(a)1M . Clearly, a⊙ǫ α = γ ⋆ǫ L∞.

Since, from Proposition 2.3.8(b), 0Lr(a)1M is a minimal sequence, by using Lemma 3.3.13(a)–

(b), we have that γ is a minimal sequence (note that ǫ1(a) = 0). Then by Proposition 3.4.5(a)

we have that γ ∈ Pǫ.

3.4.2 Proof of Theorems 3.4.1 and 3.4.3

To prove Theorem 3.4.2 we will use the following technical lemma.
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Lemma 3.4.7 Let a ∈ R. Then

(Î
∗
δ(a), Îǫ(a)] = ∪

b∈(Ẽ(a),Ẽ(a)+1]
Qǫ(b, a)

and

[Îδ(a), Î
∗
ǫ(a)) = ∪b∈[E(a),E(a)+1)Qδ(b, a).

Proof. From the definition of ⊙ǫ and Corollary 3.3.10 we may assume Ẽ(a) = 0. Since [(0L)∞, (1L)∞] =

[Îǫ(0), Îǫ(1)] = [Îδ(0), Îδ(1)] from Theorem 2.3.4 and Lemma 3.3.5(b) we have that ((0L)∞, (1L)∞] =

∪a∈(0,1]Qǫ(a) and [(0L)∞, (1L)∞) = ∪a∈[0,1)Qδ(a). Then, by using Proposition 3.3.1 and The-

orem 3.3.3(a)–(b) we have that (Î
∗
δ(b), Îǫ(b)] = (b ⊙ǫ (0L)∞, b ⊙ǫ (1L)∞] = ∪a∈(0,1]Qǫ(a, b) and

[Îδ(b), Î
∗
ǫ (b)) = [b ⊙ǫ (0L)∞, b ⊙ǫ (1L)∞) = ∪a∈(0,1]Qδ(a, b).

Proof of Theorem 3.4.2. We prove (a)–(c). Statements (d)–(f) follow in a similar way. Clearly

if a /∈ Q then Qǫ(a) = {Îǫ(a)} because Î
∗
δ(a) = Îǫ(a). This proves (a). Now, let a ∈ Z.

Since a ⊙ǫ (1L)∞ = Îǫ(a), then Uǫ(Îǫ(a)) = Uǫ(a ⊙ǫ (1L)∞) = [aM ⋆ǫ RL∞, aM ⋆ǫ L∞]. As

aM ⋆ǫ RL∞ = (a − 1)R . . . > (a − 1)L(aL)∞ = Î
∗
δ(a), statement (b) follows. Let now a ∈ Q∗.

From Lemma ?? the first part of (c) follows. The second part follows from Theorem 3.3.3(a)

and Theorem 2.3.4. This ends the proof of theorem.

The rest of this subsection is devoted to prove Theorem 1.5.3.

Proposition 3.4.8 Let k ∈ Z and let {xn}n∈N ∈ (k, k + 1) ∩ Q∗ be a sequence. Let −→a n =

(x1, . . . , xn) for n ∈ N. Then for all i ≥ 1,

Qǫ(x1) ⊃ Qǫ(xi+1,
−→a i) ⊃ Qǫ(xi+2,

−→a i+1)

and

Qδ(x1) ⊃ Qδ(xi+1,
−→a i) ⊃ Qδ(xi+2,

−→a i+1).

Proof. As before, without loss of generality we assume that xn ∈ (0, 1) for all n ∈ N. ByLemma

3.3.5(b), by using standard arguments, we see that

(0L)∞ = Îǫ(0) < Î
∗
δ(xn) < Îǫ(xn) < Îǫ(1) = (1L)∞
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for all n ∈ N. Thereforefrom Theorem 3.3.3(a) and Proposition 3.3.1, we have that

Î
∗
δ(xn) < xn ⊙ǫ Î

∗
δ(xn+1) < xn ⊙ǫ Îǫ(xn+1) < Îǫ(xn). (3.4.6)

If we use Theorem 3.3.3(a) in (3.4.6) replacing n by n + 1 we obtain that

xn ⊙ǫ Î
∗
δ(xn+1) < xn ⊙ǫ (xn+1 ⊙ǫ Î

∗
δ(xn+2)) <

xn ⊙ǫ (xn+1 ⊙ǫ Îǫ(xn+2)) < xn ⊙ǫ Îǫ(xn+1).

From (3.4.6) the first statement follows in the case n = 1. Assume now that the first statement

follows for n ≥ 1. Then we have that

−→a n ⊙ǫ Î
∗
δ(xn+1) < −→a n+1 ⊙ǫ Î

∗
δ(xn+2)) <

−→a n+1 ⊙ǫ Îǫ(xn+2)) < −→a n ⊙ǫ Îǫ(xn+1).

By using (3.4.6) with n + 1 instead of n, from Theorem 3.3.3(a), we obtain that

−→a n ⊙ǫ Î
∗
δ(xn+1) < −→a n ⊙ǫ (xn+1 ⊙ǫ Î

∗
δ(xn+2))) <

−→a n ⊙ǫ (xn+1 ⊙ǫ Îǫ(xn+2))) < −→a n ⊙ǫ Îǫ(xn+1).

This concludes the proof of the first statement. The second one follows in a similar way.

Proposition 3.4.9 Let k ∈ Z, n ∈ N and let x1, . . . xn ∈ (k, k+1)∩Q∗. Set −→a n = (x1, . . . , xn).

Then, for each c ∈ (k, k + 1) such that c /∈ Q, we have that

Qǫ(c,
−→a n) = {−→a n ⊙ǫ Îǫ(D̃(c))}

and

Qδ(c,
−→a n) = {−→a n ⊙δ Îδ(D(c))}.

Also, Uǫ(
−→a n ⊙ǫ Îǫ(1)) ⊂ Qǫ(k + 1,−→a n) and Uδ(

−→a n ⊙δ Îδ(0)) ⊂ Qδ(k,−→a n).

Proof. As in the previous results, whitout loss of generality assume that k = 0. Then by the

definition of Qǫ(c,
−→a n) and Qδ(c,

−→a n), and Lemma 2.3.3 the statement follows for c irrational.
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To end the proof of the proposition we will show that

−→a n ⊙ǫ Î
∗
δ(1) < β1M ⋆ǫ RL∞ < β1M ⋆ǫ L∞ = −→a n ⊙ǫ Îǫ(1).

Recall that, from Proposition 3.4.1(a), −→a n ⊙ǫ Îǫ(1) = β1M ⋆ǫ L∞. Since Îǫ(1) = (1L)∞ from

Proposition 3.4.1(a) we have that xn ⊙ǫ Îǫ(1) = Îǫ(xn) = (0Lr(xn)1L)∞ is periodic. Assume

that r(xi) has length ki for i = 1, 2, . . . , n. Let (0Lr(xn)1L)∞ = (β1,n . . . βkn+1,n1L)∞ = (β
n
1L)∞

and let

β
n−1

=

1+(kn+1)kn−1+2(kn+1)︷ ︸︸ ︷
0Lr(xn−1)β1,nβ̂1,nr(xn−1) . . . r(xn−1)βkn+1,n

̂βkn+1,nr(xn−1) .

Then, from the definition of ⊙ǫ, we have that

xn−1 ⊙ǫ (xn ⊙ǫ Îǫ(1)) = (β
n−1

1L)∞

and

xn−1 ⊙ǫ (xn ⊙ǫ Î
∗
δ(1)) = β

n−1
0L1L . . . .

Proceeding inductively we obtain that

−→a n ⊙ǫ Îǫ(1) = (β
1
1L)∞

and

−→a n ⊙ǫ Î
∗
δ(1) = β

1
0L1L . . . .

By Proposition 3.4.1(a) we can write −→a n ⊙ǫ Îǫ(1) = β
1
1M ⋆ǫ L∞. Then we have that β

1
1M ⋆ǫ

RL∞ = β
1
0R . . . . In consequence β

1
1M ⋆ǫRL∞ > −→a n⊙ǫ Î

∗
δ(1) and Uǫ(

−→a n⊙ǫÎǫ(1)) ⊂ Qǫ(c,
−→a n).

The second inclusion follows in a similar way. This ends the proof of the proposition.

Proof of Theorem 3.4.3. We prove statement (a). Statement (b) follows in a similar way.

Without loss of generality assume that Ẽ(x1) = 0. From Theorem 3.4.2(c) we have that

Qǫ(x1) = {Î∗δ(x1)} ∪ (∪x2∈(0,1]Qǫ(x2, x1)).

Then we have one and only one of the following four possibilities:
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(1.1) ÎF (0+) ∈ Qǫ(x2, x1) = Qǫ(x2,
−→a 1) with x2 ∈ Q∗.

(1.2) ÎF (0+) = Î
∗
δ(x1).

(1.3) ÎF (0+) ∈ Qǫ(1, x1) = Qǫ(1,
−→a 1).

(1.4) ÎF (0+) ∈ Qǫ(x2, x1) = Qǫ(x2,
−→a 1) with x2 /∈ Q.

Now, assume that (1.1) holds. Since

Qǫ(x2, x1) = [x1 ⊙ǫ Î
∗
δ(x2), x1 ⊙ǫ Îǫ(x2)]

= [x1 ⊙ǫ (x2 ⊙ǫ (0L)∞), x1 ⊙ǫ (x2 ⊙ǫ (1L)∞)]

we have that

Qǫ(x2, x1) = {−→a 2 ⊙ǫ (0L)∞} ∪ (−→a 2 ⊙ǫ Îǫ(0),
−→a 2 ⊙ǫ Îǫ(1)]

is equal to {−→a 2 ⊙ǫ (0L)∞} ∪ (∪x3∈(0,1][
−→a 2 ⊙ǫ Î

∗
δ(x3),

−→a 2 ⊙ǫ Îǫ(x3)]). Thus

Qǫ(x2, x1) = {−→a 2 ⊙ǫ (0L)∞} ∪ (∪x3∈(0,1]Qǫ(x3,
−→a 2)).

Then one and only one of the following four possibilities hold.

(2.1) ÎF (0+) ∈ Qǫ(x3,
−→a 2) with x3 ∈ Q∗.

(2.2) ÎF (0+) = −→a 2 ⊙ǫ (0L)∞ = −→a 1 ⊙ǫ Î
∗
δ(x2).

(2.3) ÎF (0+) ∈ Qǫ(1,
−→a 2).

(2.4) ÎF (0+) ∈ Qǫ(x3,
−→a 2) with x3 /∈ Q.

Proceeding inductively we have that if (n-1.1) holds then one and only one of the following

four possibilities hold.

(n.1) ÎF (0+) ∈ Qǫ(xn+1,
−→a n) with xn+1 ∈ Q∗.

(n.2) ÎF (0+) = −→a n−1 ⊙ǫ Î
∗
δ(xn).

(n.3) ÎF (0+) ∈ Qǫ(1,
−→a n).

(n.4) ÎF (0+) ∈ Qǫ(xn+1,
−→a n) with xn+1 /∈ Q.
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We note that statement (a.1) is equivalent to say that statement (n.1) holds for all n ≥ 1.

From above we have that either (n.1) holds for all n ≥ 1, or there exists n ≥ 2 such that (n-1.1)

does not hold and one and only one of the three conditions (n-1.2)–(n-1.4) hold. Then the

theorem follows from Propositions 3.4.8 and 3.4.9.

3.4.3 Concluding remarks

In this chapter we have described the structure of the boxes Qǫ(a) and Qδ(a). This gives a good

information on the bifurcations occurring when the left (respectively right) endpoints of the

rotation interval goes trough a rational. However to describe the self–similar structures of the

Arnol’d tongues, a deeper knowledge of the topology of the sets Tǫ(a) and Tδ(a) (and hence of E)

is needed. In this context an open problem in to characterize the symbolic structure of the part

of the integer boxes which is the complement of the unimodal ones. That is, Qǫ(k)\Uǫ(Îǫ(k))

and Qδ(k)\Uδ(Îδ(k)) (see Theorem 3.4.2(b) and (e)) for k ∈ Z.

On the other hand, Theorem 3.4.3 can be viewed as a refinement of Theorem 2.3.4 (see [5])

thus giving a better approximation on topological entropy and the set of periodic points of the

map under consideration.

3.5 Appendix

Proof Of Theorem 3.1.1. Clearly if α ∈ Eǫ then from the definition of E we only have to prove the

“only if ” part. To do it let α = ds1
1 ds2

2 . . . be a minimal sequence satisfying that if some n ≥ 0,

Sn(α) = dR . . . , then Sn+1(α) ≥ α′. Since α is an admissible sequence there exists k ∈ N such

that for all i ≥ 1, | di |≤ k. Clearly Sn(α) ≤ ((k+1)L)∞ for all n ≥ 0. Thus (α, ((k+1)L)∞) ∈ E .

This ends the proof of (a). Statement (b) follows in a similar way.



Chapter 4

Topological entropy

4.1 Introduction

In [17] Hockett and Holmes describe certain bifurcations of a continuous one-parameter family of

degree one circle maps in terms of the relation between the parameter and the rotation interval

of these maps. To carry on their study they use the natural extension of the “Kneading Theory”

of Milnor and Thurston [20] to the family of maps they consider. This extension is based in the

use of an “ad hoc” coding. In order to maintain small the number of symbols of this coding

(and, therefore, to maintain the difficulty of the computations at a reasonable level) the authors

have to impose a restriction on the “height” of the maps under consideration (see Section 2.2

for a precise definition of “height”).

The purpose of this chapter is to obtain a simple formula for the topological entropy of the

maps from the family considered by Hockett and Holmes in [17]. To do this, instead of working

in their framework, we shall use the coding introduced by Alsedà and Mañosas in [5] together

with the appropriate extension of the Kneading Theory given in Chapter 1 to this coding. The

advantage of this approach is that it allows us to work with circle maps of degree one of arbitrary

“height” without increasing too much the difficulty of the computations. Therefore, we shall be

able to find a simple entropy formula for a much wider class of maps. This formula depends in

a simple way on the kneading pair of the map under consideration (see again Section 2.2 for a

precise definition of a kneading pair).

Now we are going to define the class M of maps we shall consider. We will say that F ∈ M
if:

98
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(A) F ∈ A.

(B) There exists a closed interval AF of length at most 1 such that cF ∈ Int(AF ) and F (AF ) ⊂
AF + m for some m ∈ Z.

We recall that each map from L is conjugated by a translation to a map from L having

the minimum at 0. Therefore, the fact that in (A) we fix that F has a minimum in 0 is not

restrictive.

The chapter is organized as follows. In Section 4.2 we recall the definition of topological

entropy for continuous maps of a compact space into itself. In Section 4.3 we define the appro-

priate Kneading Theory for the class A in order to compute the topological entropy. Finally,

in Section 4.4 we state the formula to compute the topological entropy for maps in M and in

Section 4.5 we prove it.

4.2 The topological entropy

There are several definitions of topological entropy. We shall use the classical definition, due to

Adler, Konheim and McAndrew [1].

Let X be a compact (usually metric) topological space, and let f : X −→ X be a continuous

map. A set Y of subsets of X is called a cover if their union is X. For open covers Y1,Y2, . . . ,Yn

of X we denote:

n∨

i=1

Yi = Y1 ∨ Y2 ∨ . . . ∨ Yn

= {A1 ∩ A2 ∩ . . . ∩ An : Ai ∈ Yi, 1 ≤ i ≤ n, A1 ∩ A2 ∩ . . . ∩ An 6= ∅}.

Note that ∨n
i=1Yi is also an open cover.

For an open cover Y we denote f−n(Y) = {f−n(A) : A ∈ Y} and Yn = ∨n
i=0f

−i(Y). For

each i, f−i(Y) is an open cover, so Yn is also an open cover. If we want to indicate that we use

the map f , we write Yn
f for Yn. Next, we denote by N (A) the minimal possible cardinality of a

subcover chosen from Y (i.e. a subset of Y which is also a cover of X). If Y is a cover of X and

Y ⊂ X then we denote by Y|Y the cover {A ∩ Y : A ∈ Y} of Y .
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The following simple inequalities hold:

N (Y ∨ J ) ≤ N (Y)N (J ), (4.2.1)

N (f−n(Y)) ≤ N (Y). (4.2.2)

We have Yk+n = Yk ∨ f−k(Yn) and hence the next useful inequality

N (Yk+n) ≤ N (Yk)N (Yn). (4.2.3)

We have to use a simple analytic lemma. A sequence (αn)∞n=1 of non-negative real numbers

is called subadditive if for each n and k we have αk+n ≤ αk + αn.

Lemma 4.2.1 If (αn)∞n=1 is a subadditive sequence then the limit

lim
n→∞

αn

n

exists and is equal to infn αn/n.

By (4.2.3) and Lemma 4.2.1, the limit

h(f,Y) = lim
n→∞

1

n
logN (Y) (4.2.4)

exists and is equal to the infimum of (1/n) logN (Yn). Clearly, h(f,Y) ≥ 0. The number h(f,Y)

is called the (topological) entropy of f on the cover Y. Now we can take

h(f) = suph(f,Y) (4.2.5)

where the supremum is taken over all open covers Y of X. The number h(f) is called the

topological entropy of f . It is also non-negative.

Let F ∈ L and assume that F is a lifting of f. We define the topological entropy of F, h(F ),

as the topological entropy of f (see [1] or [35]).

The topological entropy measures the complexity of the map in the sense that it measures

the exponential growth rate of the number of “ε−different” pieces of orbits of length n when

n tends to infinity. For a piecewise monotone map of the interval it measures the exponential
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growth rate of the number of pieces of monotonicity of the iterates of the map (see [36]). Roughly

speaking, it also measures the exponential growth rate of the number of periodic orbits, as we

increase their periods.

4.3 Kneading Theory and Topological entropy for maps in A

Now, we are going to outline the extension of the kneading theory of Milnor and Thurston [20]

to the class A. These techniques have been used already by Alsedá and Mañosas in [5] to obtain

lower bounds of the topological entropy depending on the rotation interval for the class of maps

A.

We say that F ∈ L is piecewise monotone if there are 0 = c0 < c1 < · · · < cn = 1, such that,

F |[ci−1,ci] is strictly monotone for i = 1, 2, . . . n. Assume that each interval [ci−1, ci] is maximal

having the above property and satisfying that (E◦F )|(ci−1,ci) is constant. Note that the points of

the set {ci +k, i = 0, 1, . . . n; k ∈ Z} are either local minima, local maxima, points of Z, or points

of F−1(Z). We call those points turning points of F . From now on, the set of turning points

of F will be denoted by ∆(F ). We note that if F is piecewise monotone then Fn is piecewise

monotone for all n ≥ 0. Also, any map from A is piecewise monotone.

Let F ∈ A be with height pF (see Section 2.2). Then ∆(F ) = Z ∪ F−1(Z) ∪ cF + Z.

We note that if x ∈ ∆(F ) then x + Z ⊂ ∆(F ). Moreover, ∆(F ) ∩ [0, 1] can be written as

{c0, c1, c2, . . . , c2p+1} with 0 = c0 < c1 < . . . < cp+1 = cF < . . . < c2p+1 = 1, F (c1) =

E(F (0)) + 1 = E(F (cF )) − p + 1 and F (ci) = F (c2p+1−i) = E(F (cF )) − p + i for i = 2, 3, . . . , p

(see Figure 4.3.1).

Now we define the notion of address we are going to use. It is essentially the same that

has been introduced in Chapter 2 except for the fact that, in order to compute topological

entropy easily, we code each turnig point in (0, 1) with a special symbol. For x ∈ R we set

AF (x) = (s(x), d(x)), where d(x) = E(F (x)) − E(x) and

s(x) =





L if x − E(x) < cF and x 6∈ ∆(F ),

R if x − E(x) > cF and x 6∈ ∆(F ),

ci if D(x) = ci.

Since F |[ci−1,ci] is monotone and (E ◦ F )|[ci−1,ci] is constant for all i = 1, 2, . . . , 2p + 1, each

point from an interval of the form (ci−1, ci) + m with m ∈ Z has the same address.
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Figure 4.3.1: The turning points of a map from A.

Next we are going to define the invariant coordinate of a point. Let

A = (s, d) ∈ {L,R, c0, c1, c2, . . . , c2p+1} × Z.

We set

ǫ(A) =





1 if s = L,

−1 if s = R,

0 otherwise,

κ0(x) = AF (x), and

κn(x) =

[
n−1∏

i=0

ǫ(AF (F i(x)))

]
AF (Fn(x))

for each n ∈ N. Then the formal power series
∑∞

n=0 κn(x)tn will be called the invariant coordinate

of x and will be denoted by κF (x) (or simply κ(x) when no confusion will be possible). Note

that κ(x) = κ(x + m) for all m ∈ Z.

Let V be the set of all pairs of the form (s, d) with d ∈ Z and s ∈ {L,R}. We note that for

F ∈ A and for x 6∈ ∆(F ), AF (x) ∈ V.
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It is not difficult to show that for each n ≥ 0 there exists δ(n) > 0 such that κn(y) takes a

constant value, denoted by κ(x+), for all y ∈ (x, x + δ(n)). Then, for x ∈ R we set

κ(x+) = κF (x+) =
∞∑

n=0

κn(x+)tn.

In a similar way we define κ(x−).

We note that if Fn(x) 6∈ ∆(F ) for all n ≥ 0 (that is, s(Fn(x)) ∈ {L,R} for all n ≥ 0) then

κ(x+) = κ(x−) = κ(x). As for the invariant coordinate we have that κ(x+) = κ((x + m)+) and

κ(x−) = κ((x + m)−) for all m ∈ Z. The sequences κ(0+) and κ(c−F ) will play a special role in

our study.

Remark 4.3.1 For each δ > 0 there exists ǫ > 0 such that for all x ∈ (0, δ) there exists

y ∈ (−ǫ, 0) with the property that F (x) = F (y). Therefore, κ0(0
+) = (L,E(F (0))), κ0(0

−) =

(R,E(F (0))+1) and κn(0+) = −κn(0−) for all n > 0. In a similar way we obtain that κ0(c
+
F ) =

(R,E(F (cF ))), κ0(c
−
F ) = (L,E(F (cF ))) and κn(c+

F ) = −κn(c−F ) for all n > 0. Furthermore,

assume that F ∈ A has kneading pair (ÎF (0+), ÎF (c−F )) with ÎF (0+) = d
s1,1

1,1 d
s1,2

1,2 . . . and ÎF (c−F ) =

d
s2,1

2,1 d
s2,2

2,2 . . . . We note that then κ0(0
+) = (L, d1,1) and κi(0

+) = ±(s1,i, d1,i+1) for each i ≥ 1.

Also, κ0(c
−
F ) = (L, d2,1) and κi(c

−
F ) = ±(s2,i, d2,i+1) for each i ≥ 1. Therefore, from the kneading

pair of F we get easily the sequences κ(0−) and κ(c+
F ). 2

By setting L < R we can define an ordering in V as follows. Let (s, d) and (t,m) be elements

of V such that (s, d) 6= (t,m). We say that (s, d) < (t,m) if either

s < t or

s = t = L and d < m, or

s = t = R and d > m.

If none of these holds we say that (s, d) > (t,m). We note that this ordering has the property

that if x, y 6∈ ∆(F ) and x < y, then AF (x) ≤ AF (y).

For a map F ∈ A, we shall denote by VF the set of all addresses of all points of R \ ∆(F ).

Note that VF ⊂ V and CardVF = 2p + 1. We also shall write the elements of VF as I1 < I2 <

. . . < I2p+1.

Now, for each i ∈ {1, 2, . . . , 2p}, we define the i-th kneading invariant of F to be ν(ci) =

κF (c+
i )−κF (c−i ). Note that ν(ci) is a power series with coefficients in Z[[VF ]]. Thus we can write
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ν(ci) =
∑n

j=1 νj
i (t)Ij with νj

i (t) ∈ Z[[t]] for all i, j. The (2p + 1) × (2p) matrix KF (t) = (νj
i (t))

will be called the kneading matrix of F . Let Di
F (t) be the determinant which is obtained by

deleting the i-th row of KF (t).

The expression

DF (t) =
(−1)i+1

(1 − ǫ(Ii)t)
Di

F (t)

will be called the kneading determinant of F . It is well known [20] (see also [5]) that the above

expression does not depend on i. Thus, the kneading determinant of F is well defined. From

[20] and [36] (see also [5]) we obtain the following result.

Theorem 4.3.2 Let F ∈ A. If DF (t) does not vanish in (0, 1) then h(F ) = 0. Otherwise,

h(F ) = log 1
α where α is the smallest zero of DF (t) in (0, 1).

Theorem 4.3.2 is the key point to obtain our formula to compute the topological entropy.

This is the goal of the next section. However, we will end this section with a simple result on

the topological entropy for maps in A.

Proposition 4.3.3 Let F ∈ A be such that ((ÎF (0+))′ = ÎF (c−F ). Then h(F ) = 0.

Proof. Since ((ÎF (0+))′ = ÎF (c−F ) we have that pF = 1. So, we can write κ(0+) = I1 + k(t),

κ(0−) = I3 − k(t), κ(c+
F ) = I3 − k(t) and κ(c−F ) = I2 + k(t) where k(t) =

∑3
j=1 pj(t)Ij with

pj(t) ∈ Z[[t]] for j = 1, 2, 3. Since F (c1) = 1 we have that κ(c+
1 ) = I2 + κ(0+) and κ(c−1 ) =

I1 + κ(0−). Therefore, ν(c1) = (I2 + I1 + k(t))− (I1 + I3 − k(t)) = I2 − I3 + 2k(t). On the other

hand, since c2 = cF , ν(c2) = (I3 − k(t)) − (I2 + k(t)) = I3 − I2 − 2k(t). Thus, ν(c1) = −ν(c2)

and, hence, DF (t) = 0. Therefore, h(F ) = 0 from Theorem 4.3.2.

4.4 The Topological entropy formula for maps in M

This section will be devoted to establish the formula for the topological entropy we are looking

for. To do this we shall obtain a formula for the kneading determinant of F and we will use

Theorem 4.3.2.

Since AF has length at most 1 and cF ∈ Int(AF ) we have AF ⊂ (cF −1, cF +1). On the other

hand, since F (AF ) ⊂ AF +m we know that F (AF ) also has length at most 1. Therefore, 0 6∈ AF .

Otherwise, F (AF ) ⊃ F ((0, cF )). In view of (A) and (B) we have that F (cF ) > F (1) = F (0)+1.
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Hence, F (AF ) would have length larger than 1; a contradiction. Assume now that 1 ∈ AF . Let

BF denote the interval [max AF ,min AF + 1] (note that BF degenerates to a point if AF has

length 1) and let G denote the map F − m. Since G(AF ) ⊂ AF we have that G(max AF ) ≤
maxAF and G(min AF ) ≥ min AF . Then, G(min AF + 1) = G(min AF ) + 1 ≥ min AF + 1

because G ∈ L. Therefore, G has a fixed point in BF . Let us call this fixed point uF . Since

BF ⊂ (1, cF + 1), G is strictly increasing in BF . Thus, G([uF − 1, uF ]) = [uF − 1, uF ] and,

hence, G|[uF−1,uF ] is a bimodal map of the interval. We note that, in this case, F has degenerate

rotation interval equals to {m}. For this case an entropy formula has been obtained by Mumbrú

in [37]. Thus, in what follows we shall replace (C) by the following stronger condition:

(C) There exists a closed interval AF ⊂ (0, 1) such that cF ∈ Int(AF ) and F (AF ) ⊂ AF + m

for some m ∈ Z.

We note that then, if F ∈ M, the interval map (F − m)|AF
is unimodal.

Prior to state the theorem giving the entropy formula for maps from M, which is the main

result of this chapter, we shall introduce some more notation.

Set RF (t) = t[κ(0+)−κ(0−)]. Since κ(0+) and κ(0−) are formal power series with coefficients

in Z[[VF ]] so is RF (t). Hence, RF (t) can be written as
∑2pF +1

i=1 φi(t)Ii, where φi(t) ∈ Z[[t]] for

all i = 1, 2, . . . , 2pF + 1. Then we also set

PF (t) = −1 +
pF∑

i=1

(pF − i + 1)φi(t) −
2pF +1∑

i=pF +3

(i − pF − 2)φi(t).

Remark 4.4.1 The series PF (t) can be computed directly from κ(0+) and hence from ÎF (0+)

(see Remark 4.3.1). To see this we note that, in a similar way as we did for RF (t), we can write

κ(0+) as
∑2p+1

i=1 φ̃i(t)Ii with φ̃i(t) ∈ Z[[t]] for all i = 1, 2, . . . , 2pF + 1. Then, by Remark 4.3.1,

we have that RF (t) = tI1 − tI2p+1 + 2t[κ(0+) − I1] = −tI1 − tI2p+1 + 2tκ(0+). Hence, φ1(t) =

−t + 2tφ̃1(t), φ2p+1(t) = −t + 2tφ̃2p+1(t) and φi(t) = φ̃i(t) for i = 2, 3, . . . , 2p. 2

From the definition of M (see (C)) we have that κ(c+
F ) and κ(c−F ) are formal power series with

coefficients in Z[[Ip+1, Ip+2]]. Therefore, κ(c+
F )−κ(c−F ) can be written as KF (t)Ip+1 + K̃F (t)Ip+2

with KF (t), K̃F (t) ∈ Z[[t]].

Remark 4.4.2 The series KF (t) can be computed directly from κ(c−F )and hence from ÎF (c−F )

(see Remark 4.3.1). Indeed, if κ(c−F ) = π1(t)Ip+1 + π2(t)Ip+2 with π1(t), π2(t) ∈ Z[[t]] then, by
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Remark 4.3.1, we have that κ(c+
F ) = (1−π1(t))Ip+1 +(1−π2(t))Ip+2. Hence KF (t) = 1−2π1(t).

2

If KF (t) vanishes in (0, 1) we shall denote by αKF
the smallest zero of KF (t) in (0, 1).

Otherwise we set αKF
= 1. In a similar way we define αPF

by using PF (t) instead of KF (t).

The following theorem is the main result of this paper and gives the formula we are looking

for.

Theorem 4.4.3 For F ∈ M we have h(F ) = log(min{αKF
, αPF

})−1.

We note that, in view of Remarks 4.4.1 and 4.4.2, the numbers αKF
and αPF

can be computed

solely from the knowledge of ÎF (0+) and ÎF (c−F ). Therefore, Theorem 4.4.3 gives a formula for

the topological entropy of a map from M depending only on the kneading pair of the map under

consideration.

In view of Condition (C), for each F ∈ M we get that F |AF
is unimodal. Therefore, α−1

KF
≤ 2

(see for instance [36]). Hence, whenever α−1
PF

≥ 2 we shall have h(F ) = log α−1
PF

. Next we shall

obtain sufficient conditions to assure the validity of this formula.

Corollary 4.4.4 If the length of the rotation interval of F ∈ M is strictly larger that 1/2 then

h(F ) = log α−1
PF

.

Proof. We note that the rotation interval of each map F ∈ M is of the form [c, dF ] with

dF = E(F (cF )). By Theorem B of [3] we get that h(F ) ≥ log βdF −c where βdF−c is the largest

root of the equation

z + 1 − 2
∞∑

n=0

z−E(n/(dF−c)) = 0.

In view of Theorem C.(c) and Lemma 22 of [3] we obtain that βdF−c is larger than or equal to

the largest root of the equation x3 − x2 − 3x + 1 = 0. This root is 2.1700864866 . . .. This ends

the proof of the corollary.

We also note that if for F ∈ M we have pF ≥ 2 then the rotation interval of F has length

larger than or equal to 1. Thus, from the above corollary, we obtain

Corollary 4.4.5 Let F ∈ M. If pF ≥ 2 then h(F ) = log α−1
PF

.
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Figure 4.4.2: A map Fµ which satisfies (a)–(c).

On the other hand, in the case of the family considered by Hockett and Holmes [17] it turns

out that αKF
= 1 and, hence, the same formula for the topological entropy holds. To see this let

us define precisely the family of maps they considered. Let [µ0, µ1] be a closed proper interval

of the real line and let Fµ = F (µ, .) : [µ0, µ1] × R −→ R be a continuous one-parameter family

satisfying the following conditions for each µ ∈ [µ0, µ1]:

1. Fµ ∈ M∩ C1(R,R).

2. There exists wµ ∈ AFµ such that wµ is an attractive fixed point of (Fµ−m)|AF
and min AF

is a repulsive fixed point of (Fµ − m)|AF
.

3. There exist a ∈ (0, cF ) and b ∈ (cF , 1) such that Fµ(b) = Fµ(min AF ) = Fµ(a) + 1 and

a + 1 > Fµ(0) > b (see Figure 4.4.2).
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We note that for such a family of maps one has wµ < b and E(Fµ(cF )) = E(Fµ(wµ)) for

each µ ∈ [µ0, µ1]. Therefore, AFµ(Fn
µ (cFµ)) = Ip+2 for all n ≥ 1 and, hence, κ(c−Fµ

) = Ip+1 +
∑∞

i=1(−1)i−1tiIp+2. Thus, by Remark 4.4.2, KF µ(t) = −1. Therefore, in view of Theorem 4.4.3,

we get the following

Corollary 4.4.6 Let Fµ : [µ0, µ1]×R −→ R be the continuous one-parameter family satisfying

conditions (a)–(c). Then h(Fµ) = log α−1
PFµ

for all µ ∈ [µ0, µ1].

4.5 Proof of Theorem 4.4.3

In view of Theorem 4.3.2 we only have to show that the zeros of KF (t) · PF (t) and DF (t)

in (0, 1) coincide. Before starting the proof of Theorem 4.4.3 we shall compute the kneading

invariants of the map under consideration. Since cp+1 = cF we have that ν(cp+1) = ν(cF ) =

κ(c+
F ) − κ(c−F ) = KF (t)Ip+1 + K̃F (t)Ip+2. The next lemma takes care of the computation of the

rest of the kneading invariants.

Lemma 4.5.1 For each F ∈ M we have ν(ci) = Ii+1 − Ii + RF (t) for i 6= pF + 1.

Proof. First we compute ν(ci) with i ∈ {1, 2, . . . , p}. Since F is increasing in a neighborhood of

ci, F (ci) ∈ Z and, κ(x+) = κ((x + m)+) and κ(x−) = κ((x + m)−) for all x ∈ R and m ∈ Z

we have that κ(c+
i ) = Ii+1 + ǫ(Ii+1)tκ(0+) and κ(c−i ) = Ii + ǫ(Ii)tκ(0−). Since i ≤ p we have

ǫ(Ii+1) = ǫ(Ii) = 1 and, hence, ν(ci) = Ii+1 − Ii + t[κ(0+) − κ(0−)] = Ii+1 − Ii + RF (t). When

i ∈ {p + 2, . . . , 2p}, since F is decreasing in a neighborhood of ci, in a similar way we have

κ(c+
i ) = Ii+1 + ǫ(Ii+1)tκ(0−) and κ(c−i ) = Ii + ǫ(Ii)tκ(0+). Now we have ǫ(Ii+1) = ǫ(Ii) = −1

and, hence, ν(ci) = Ii+1 − Ii − t[κ(0−) − κ(0+)] = Ii+1 − Ii + RF (t).

Proof of Theorem 4.4.3. We recall that RF (t) =
∑2p+1

i=1 φi(t)Ii (in this proof pF will be denoted

by p for simplicity). Then, by Lemma 4.5.1, we have that KF (t) is (in the following matrices,

again for simplicity, φi(t) will be denoted by φi)
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


φ1 − 1 φ1 · · · φ1 0 φ1 φ1 · · · φ1 φ1

φ2 + 1 φ2 − 1 · · · φ2 0 φ2 φ2 · · · φ2 φ2

φ3 φ3 + 1 · · · φ3 0 φ3 φ3 · · · φ3 φ3

φ4 φ4 · · · φ4 0 φ4 φ4 · · · φ4 φ4

..

.
..
.

. . .
..
.

..

.
..
.

..

.
. . .

..

.
..
.

φp φp · · · φp − 1 0 φp φp · · · φp φp

φp+1 φp+1 · · · φp+1 + 1 KF (t) φp+1 φp+1 · · · φp+1 φp+1

φp+2 φp+2 · · · φp+2 K̃F (t) φp+2 − 1 φp+2 · · · φp+2 φp+2

φp+3 φp+3 · · · φp+3 0 φp+3 + 1 φp+3 − 1 · · · φp+3 φp+3

...
...

. . .
...

...
...

...
. . .

...
...

φ2p φ2p · · · φ2p 0 φ2p φ2p · · · φ2p + 1 φ2p − 1

φ2p+1 φ2p+1 · · · φ2p+1 0 φ2p+1 φ2p+1 · · · φ2p+1 φ2p+1 + 1




.

Now, Dp+2
F (t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 − 1 φ1 · · · φ1 0 φ1 φ1 · · · φ1 φ1

φ2 + 1 φ2 − 1 · · · φ2 0 φ2 φ2 · · · φ2 φ2

φ3 φ3 + 1 · · · φ3 0 φ3 φ3 · · · φ3 φ3

φ4 φ4 · · · φ4 0 φ4 φ4 · · · φ4 φ4

.

..
.
..

. . .
.
..

.

..
.
..

.

..
. . .

.

..
.
..

φp φp · · · φp − 1 0 φp φp · · · φp φp

φp+1 φp+1 · · · φp+1 + 1 KF (t) φp+1 φp+1 · · · φp+1 φp+1

φp+3 φp+3 · · · φp+3 0 φp+3 + 1 φp+3 − 1 · · · φp+3 φp+3

...
...

. . .
...

...
...

...
. . .

...
...

φ2p φ2p · · · φ2p 0 φ2p φ2p · · · φ2p + 1 φ2p − 1

φ2p+1 φ2p+1 · · · φ2p+1 0 φ2p+1 φ2p+1 · · · φ2p+1 φ2p+1 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2p

=

(−1)
2(p+1)

KF (t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 − 1 φ1 · · · φ1 φ1 φ1 · · · φ1 φ1

φ2 + 1 φ2 − 1 · · · φ2 φ2 φ2 · · · φ2 φ2

φ3 φ3 + 1 · · · φ3 φ3 φ3 · · · φ3 φ3

φ4 φ4 · · · φ4 φ4 φ4 · · · φ4 φ4

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

φp φp · · · φp − 1 φp φp · · · φp φp

φp+3 φp+3 · · · φp+3 φp+3 + 1 φp+3 − 1 · · · φp+3 φp+3

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

φ2p φ2p · · · φ2p φ2p φ2p · · · φ2p + 1 φ2p − 1

φ2p+1 φ2p+1 · · · φ2p+1 φ2p+1 φ2p+1 · · · φ2p+1 φ2p+1 + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2p−1

=
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φ1 − 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1

φ2 + 1 −2 −1 −1 · · · −1 −1 −1 −1 · · · −1 −1 −1

φ3 1 −1 0 · · · 0 0 0 0 · · · 0 0 0

φ4 0 1 −1 · · · 0 0 0 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...

φp−1 0 0 0 · · · −1 0 0 0 · · · 0 0 0

KF (t) φp 0 0 0 · · · 1 −1 0 0 · · · 0 0 0 .

φp+3 0 0 0 · · · 0 0 1 −1 · · · 0 0 0

φp+4 0 0 0 · · · 0 0 0 1 · · · 0 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...

φ2p−1 0 0 0 · · · 0 0 0 0 · · · 1 −1 0

φ2p 0 0 0 · · · 0 0 0 0 · · · 0 1 −1

φ2p+1 0 0 0 · · · 0 0 0 0 · · · 0 0 1 2p−1

If p = 1 then it follows that

Dp+2
F (t) = KF (t)(φ1(t) − 1) = KF (t) · PF (t).

Now, suppose that p ≥ 2. Then by adding the first row of the determinant to the second one we

get, Dp+2
F (t) =

φ1 − 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1

φ2 + φ1 −1 0 0 · · · 0 0 0 0 · · · 0 0 0

φ3 1 −1 0 · · · 0 0 0 0 · · · 0 0 0

φ4 0 1 −1 · · · 0 0 0 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...

φp−1 0 0 0 · · · −1 0 0 0 · · · 0 0 0

KF (t) φp 0 0 0 · · · 1 −1 0 0 · · · 0 0 0 .

φp+3 0 0 0 · · · 0 0 1 −1 · · · 0 0 0

φp+4 0 0 0 · · · 0 0 0 1 · · · 0 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

...

φ2p−1 0 0 0 · · · 0 0 0 0 · · · 1 −1 0

φ2p 0 0 0 · · · 0 0 0 0 · · · 0 1 −1

φ2p+1 0 0 0 · · · 0 0 0 0 · · · 0 0 1 2p−1

Let uk =
∑2p+1

i=k φi for k = p + 3, p + 4, . . . , 2p + 1. Then we have that Dp+2
F (t) =
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φ1 − 1 1 1 · · · 1 1 1 1 · · · 1 1 1

φ2 + φ1 −1 0 · · · 0 0 0 0 · · · 0 0 0

φ3 1 −1 · · · 0 0 0 0 · · · 0 0 0

φ4 0 1 · · · 0 0 0 0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

φp−1 0 0 · · · −1 0 0 0 · · · 0 0 0

KF (t) φp 0 0 · · · 1 −1 0 0 · · · 0 0 0 .

up+3 0 0 · · · 0 0 1 0 · · · 0 0 0

up+4 0 0 · · · 0 0 0 1 · · · 0 0 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

u2p 0 0 · · · 0 0 0 0 · · · 0 1 0

u2p+1 0 0 · · · 0 0 0 0 · · · 0 0 1 2p−1

Now we add the p-th column of the above determinant to the (p − 1)-th one. Then we add the

(p − 1)-th column of the new determinant to the (p − 2)-th one and, by iterating this process

p − 2 times we get Dp+2
F (t) =

φ1 − 1 p − 1 p − 2 · · · 2 1 1 1 · · · 1 1 1

φ2 + φ1 −1 0 · · · 0 0 0 0 · · · 0 0 0

φ3 0 −1 · · · 0 0 0 0 · · · 0 0 0

φ4 0 0 · · · 0 0 0 0 · · · 0 0 0

.

..
.
..

.

..
. . .

.

..
.
..

.

..
.
..

. . .
.
..

.

..
.
..

φp−1 0 0 · · · −1 0 0 0 · · · 0 0 0

KF (t) φp 0 0 · · · 0 −1 0 0 · · · 0 0 0 .

up+3 0 0 · · · 0 0 1 0 · · · 0 0 0

up+4 0 0 · · · 0 0 0 1 · · · 0 0 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

u2p 0 0 · · · 0 0 0 0 · · · 0 1 0

u2p+1 0 0 · · · 0 0 0 0 · · · 0 0 1 2p−1

Let u = φ1 − 1 − ∑2p+1
k=p+3 uk. Then Dp+2

F (t) =

u p − 1 p − 2 · · · 2 1 0 0 · · · 0 0 0

φ2 + φ1 −1 0 · · · 0 0 0 0 · · · 0 0 0

φ3 0 −1 · · · 0 0 0 0 · · · 0 0 0

φ4 0 0 · · · 0 0 0 0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

φp−1 0 0 · · · −1 0 0 0 · · · 0 0 0

KF (t) φp 0 0 · · · 0 −1 0 0 · · · 0 0 0 .

up+3 0 0 · · · 0 0 1 0 · · · 0 0 0

up+4 0 0 · · · 0 0 0 1 · · · 0 0 0

..

.
..
.

..

.
. . .

..

.
..
.

..

.
..
.

. . .
..
.

..

.
..
.

u2p−1 0 0 · · · 0 0 0 0 · · · 0 1 0

u2p 0 0 · · · 0 0 0 0 · · · 0 0 1 2p−1
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We note that
∑2p+1

k=p+3 uk =
∑2p+1

k=p+3

∑2p+1
i=k φi(t) =

∑2p+1
i=p+3(i − p − 2)φi(t). Therefore, PF (t) =

−1+
∑p

i=1(p−i+1)φi(t)−
∑2p+1

i=p+3(i−p−2)φi(t) = −1+φ1(t)+(p−1)(φ1(t)+φ2(t))+
∑p

i=3(p−
i + 1)φi(t) −

∑2p+1
k=p+3 uk = u + (p − 1)(φ1(t) + φ2(t)) +

∑p
i=3(p − i + 1)φi(t). Thus Dp+2

F (t) =

PF (t) 0 0 · · · 0 0 0 0 · · · 0 0 0

φ2 + φ1 −1 0 · · · 0 0 0 0 · · · 0 0 0

φ3 0 −1 · · · 0 0 0 0 · · · 0 0 0

φ4 0 0 · · · 0 0 0 0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

φp−1 0 0 · · · −1 0 0 0 · · · 0 0 0

KF (t) φp 0 0 · · · 0 −1 0 0 · · · 0 0 0 .

up+3 0 0 · · · 0 0 1 0 · · · 0 0 0

up+4 0 0 · · · 0 0 0 1 · · · 0 0 0

...
...

...
. . .

...
...

...
...

. . .
...

...
...

u2p−1 0 0 · · · 0 0 0 0 · · · 0 1 0

u2p 0 0 · · · 0 0 0 0 · · · 0 0 1 2p−1

Hence, Dp+2
F (t) is equal to (−1)p−1KF (t) · PF (t).

Since

DF (t) =
(−1)p+3

(1 − ǫ(Ip+2)t)
Dp+2

F (t) =
(−1)p+3

(1 − t)
Dp+2

F (t)

we have that the zeros of DF (t) and Dp+2
F (t) in (0, 1) coincide. Therefore, the zeros of DF (t)

and KF (t) · PF (t) in (0, 1) are the same. This ends the proof of Theorem 4.4.3.
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[3] Alsedà L., Llibre J., Misiurewicz M., Simó C., Twist periodic orbits and topological entropy

for continuous maps of the circle of degree one which have a fixed point, Ergod. Th. &

Dynam. Sys.,5, 1985.
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