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KNEADING THEORY AND BIFURCATIONS FOR A
CLASS OF DEGREE ONE CIRCLE MAPS: THE
ARNOL’D TONGUES REVISITED

FRANCISCO BALIBREA AND ANTONIO FALCO

ABSTRACT. In this paper we introduce the kneading theory devel-
opped by Alseda and Manosas in [3] to describe bifurcations for a
generic family of bimodal degree one circle maps and preserving
orientation circle homeomorphisms.

1. INTRODUCTION

The map g,(z) = = + w can be seen as the superposition of two
simple sinusoidal oscillators where € S' represents the value of the
phase of one of the oscillators after the other has done one oscillation.
The term w € [0,1) represents the ratio of the frequencies of the two
oscillators.

When w is an irrational number the motion of the systems is called
quasiperiodic and if w is a rational number then the motion is called
periodic.

The more general map

(1) Hyu(z)=z+w+ % sin(27zx)

where z € R and (b, w) € R* xR was introduced by Arnol’d [4] to study
the behaviour of the motion of the system when a non-linear term is
added. The resultant family of maps has been used to study some
variety of forced systems where there are two competing frecuencies,
for example, the case of a sinusoidally driven pendulum.

Depending on the range on b, the family of maps have different be-
haviours which has been consider in the literature (see [4], [11], [6], [15]
and [9]).
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Assume that w € R, when b > 1 we have bimodal degree one circle
maps and in the case b € [0,1], H,, is a orientation preserving cir-
cle homeomophism. We can have non- linear terms of different kinds,
for example, piecewise lincar maps from which arise families of maps
similar to (1).

The aim of this paper is twofold. First we will define a generic class
of families of maps like (1) and then describe the basic structure of
bifurcations. In this case similar phenomena appear: Arnol’d tongues,
horns, phase-locking, etc.

The paper is organized as follows. In the next section we shall give
some preliminary definitions an examples. In Section 3 we state the
results of this paper and finally, in Section 4, we proof the results stated
in the previous one.

2. PRELIMINARY DEFINITIONS AN EXAMPLES

We will start this section by defining what we understand by the
class of bimodal degree one circle maps and orientation preserving cir-
cle homeomorphisms. As it is usual, instead of working with the circle
maps themselves we will rather use their liftings to the universal cover-
ing space R. In this spirit we define £ to be the class of all continuous
maps F from R into itself such that F(z + 1) = F(x) + 1 for all
z € R. That is, £ is the class of all liftings of degree one circle maps.
We will denote by A the class of maps F' € £ such that there exists
¢, € (0,1) with the property that F is strictly increasing in [0, ¢, ] and
strictly decreasing in [c,, 1]. We will suppose that £ is endowed with
the supremum topology.

We note that every map F € A has a unique local maximum and
a unique local minimum in [0,1). To define the class A we restricted
ourselves to the case in which F has the minimum at 0. Since each
map from L is conjugate by a translation to a map from £ having the
minimum at 0, the fact that we fix that the maps from A have the
minimum at 0 is not restrictive. Thus, class A models the bimodal
degree one circle maps.

We will denote the class of all orientation preserving circle homeo-
morphisms by H. More precisely, F' € H if and only if F € £ and it
is strictly increasing. Next we will define the class of families of maps
under consideration. 5

We will say that a parametrized family of maps {Fj .} (bw)er* xR 18
an Arnol’d family of degree one circle maps if for (b,w) € Rt x R the
map F;, : R = Ris given by Fy,,(z) = Gp(x) + w, where G, € L for
all b € R*, and the following conditions hold.
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(A1) The map b+ G, from R* to L is continuous.
(A2) For b € (1,00) the map G, € A and the map b —— ¢, from
(1,00) to R is continuous and the following conditions hold.
(i) limy_,, €, =1,
(ii) limy_, o0 Cg, =CE (0,1),
(iii) limp_yoo Gyl(cg,) = oo and
(iv) limp_y00 G3(0) = —00.
(A3) For b € [0,1] the map G, € H and Gy(z) = z for all z € R.

We note that by definition of Fy,, and G, we have that for all b > 1
andw € R, Fy, € Aand ¢, = cg, . Thus, in the sequel we will denote
o by c¢p.

Now, we give two examples of Arnol’d families of degree one cir-
cle maps. The first one contains only piecewise-monotone continuous
maps.

Example 2.1. Let G, € L be such that for b > 1 the map is a
piecewise-monotone map Gy € A with ¢, =1 — 3(1 — exp —{(b — 1)}),
Gy(cs) = exp{(b— 1)} and G,(0) =1 — exp{(b — 1)} for all b > 1 and
for b € [0,1], Gy(z) = z. It is not difficult to prove that G, satisfies
(A1) (A3) and in consequence {Fy}ower+ =g, is an Arnol’d family
of degree one circle maps.

In the next example we construct an Arnol’d family of maps for which
there exists continuous family {h},cg+ contained in H satisfying that
Fywohy = hyo Hy,, for all w € R. In consequence the bifurcation
diagrams of these two families are the same.

Example 2.2. Let {Hyw}(bw)er+ xR, be the standard maps family given
by (1). Assume that b > 1 and let C(b) be the relative mazimum of
Hy, in (1/4,1/2) and let M(b) be the relative minimum of Hy,, in
(1/2,3/8) that we can obtain from cos2mz = —1/b for each b > 1 (see
Figure 1). It is not difficult to see that

ll_{l’} M(b) = ,l,l_l'I}C(b) =1/2,
lim C(b) = 1/4 and lim M(b) = 3/8.
b—oo b—oo

We may assume that M(b) = C(b) = 1/2 for all b € [0,1]. Now, we
define

_f x4+ Lsin2n(z + M(b) ifb>1,
Gy(z) = { f ?;sin 2n(z +1/2)  otherwise.

Clearly, G, € L for all b € R*. For b > 1 the map G, € A with
¢g, = C(b) +1— M(b). Otherwise, Gy € H. Moreover, it is not difficult

T




FIGURE 1. The maps sin 27z and cos 27z.

to see that Gy salisfies (A1)-(A3). Let hy(z) = x + M(b), then h, € H

for allb € R* and
hy(Fy(2)) he((Gy + w)(2))

(Gp + w)(z) + M(b)

(Hpo + w)(hs(z))

Hyu(ho())

for all x € R and for all b € R*. Thus, we have proved that for

{Hbw} b.w)er* xR, there exists {Fyu} o u)er+xr, an Arnol’d family of de-

gree one circle maps and {hy}peg+ € H such that hyoFy,,, = Hy0hy for

allw e R (i.e. the maps Fy,, and H,,, are topologically conjugated).

I

Il

3. A BASIC DESCRIPTION OF THE BIFURCATION STRUCTURE IN
R* x R. STATEMENT OF RESULTS

The aim of the section is to give a two partition, composed by closed
sets, of the bifurcation plane R* x R associated to both extremes of
the rotation interval. Next, we describe the boundaries of such sets
and their relationship. This section is organized as follows. First, we
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introduce some preliminary definitions and results. In 3.2 we describe
the partitions of the bifurcation plane. Finally, in 3.3 we introduce
the kneading theory to describe bifurcations and we state the related
results.

3.1. Preliminary definitions and results. In this section we will
introduce the basic definitions to understand the dynamics of the degree
one circle maps.

First, we recall that for F' € L the rotation interval Rp is defined to
be the set

{pr(z) : z €R},
where

g F*z) -z
pe(@) = p(x) = lim sup =T,

It is well known (see [14]) that the set Rp is a closed interval, perhaps
degenerate to a single point. Also, if F' € £ is a non-decreasing map
then

RF:{.imw

n—00 n

}

Thus, to every non-decreasing map F' € £ we can associate a real
number
F"(z) —
o(F) = lim TGV =2
n—oo n
which is called the rotation number of F. Roughly speaking, p(F) is
the average angular speed of any point moving around the circle under

iteration of the map. We note that p(F) is a topological invariant of

F. That is, if F and G are topologically conjugated (i.e. there exists
h € H such that F o h = h o G) then p(F) = p(G).

The rotation interval is closely related with the existence of periodic
orbits for degree one circle maps. To see this we will introduce the
following definitions and notation.

Let F € £ and let z € R. Then the set {y € R: y = F*(z) (mod 1)
for n =0,1,...} will be called the (mod. 1) orbit of x by F. We stress
the fact that if P is a (mod. 1) orbit and z € P, then z + k € P for all
keZ.

It is not difficult to prove that each point from an orbit (mod. 1) P
has the same rotation number. Thus, we can speak about the rotation
number of P.
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If A C R and x € R, we shall write z + A or A+ z to denote the set
{z+a:a€ A} Also, if B C R we shall write A + B to denote the set
{a+b:a€ A, be B).

If 2 is a periodic (mod. 1) point of F of period ¢ with rotation
number 53 then its (mod. 1) orbit is called a periodic (mod. 1) orbit of
F of period q with rotation number s. If Pis a (mod. 1) orbit of F we
denote by P, the set PN [i,i + 1) for all € Z. Obviously P, = i + Py.
We note that if P is a periodic (mod. 1) orbit of F with period ¢, then
Card(P,) =q for alli € Z.

For a map F € £ we define maps F} and F, by

(2) Fu(z) = sup{F(y) : y < x}
and
(3) Fi(z) =inf{F(y): y > z}

(see [16], [2] and [8]). The maps F,, F; belong to £ and are non-
decreasing and Ry = [p(F), p(F)].

3.2. A bifurcation diagram for an Arnol’d family of degree one
circle maps. Let {Fbw}bw)er+xr, be an Arnol’d family of degree one
circle maps. For each b € Rt we define Py, P :R—>Rby

2y (0) = p((Fyw))

and

py (w) = p((Fyw)u),
respectively. Thus, R, | = [p; (w), p (w)].

Remark 3.1. By using the definitions of Fi and F, given in (2) and
(3) and the definition of F,, it follows that (Fouw)i(z) = w+ (Gy)i(x)
and (Fy ) u(¥) = w + (Gy)u(z). Moreover, it is not difficult to see that
Jor b € (1,00), (Fowh(0) = Fya(0) and (Fae)u(cs) = Fyo(cs) for all
w € R.

The next. result follows from Remark 3.1, the definition of F},, and
[2, Lemma 3.7.12].

Proposition 3.1. The maps p; and p;} are continuous, onto, p, is
non-increasing, p; is non-decreasing and satisfy that p; (w) < pf (w)
for all (b,w) € R* x R. Moreover, the maps b — Py and b pf are
continuous.
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A basic structure of the bifurcation plane for a given Arnol’d family
of degree one circle maps {Fy,u }(5,w)cr+ xg, can be given using the upper
(respectively, lower) a-Arnol’d tongue defined by

A7(a) = {(b,w) e R* xR: p; (w) = a}
(respectively,
A (a) = {(b,w) € R* xR : p (w) = a}).

In order to describe for each @ € R the boundaries of A~ (a) and
A*(a) we define the following four maps.
Let a € R. For each b € R* we take
. (b) = sup{w € R : p; (w) = a},
¥, (b) = inf{w € R : p, (w) = a},
¢F(b) = inf{w € R : p] (w) = a}
and
U (b) = sup{w € R : p} (w) = a}.

From Proposition 3.1 we have that the above maps, defined from R*
into R, are well defined. Note that since Fyo(z) = 2 + a, then

P, (0) =¥, (0) = ¥7(0) =} (0) =a
for all @ € R. The next lemma follows straithforward from the defini-
tions (see Figure 2).
Lemma 3.2. The following statements hold.
(a) For alla € R and b € R*,

P71 (b) < Ui (b) < @, (b)
and
BF(6) < W (b) < B; (b).

(b) For alla € R and b € (0,1], ®; (b) = ¥} (b) and ¥ (b) = &7 (b).
(c) Let a,a' € R with a < a'. Then

(i) @ (b) < ®7(b) for all b € (0,1] and

(i) g (b) < W, (b) and ¥} (b) < ®%(b) for all b € (0, 00).

Clearly, all of these maps describe, for each a € R, the boundaries
of A7(a) and A*(a). Note that we use the endpoints of the rotation
interval in the definition of the boundary maps. Thus, when one or
both of the endpoints of the rotation interval is a rational number it
is possible to establish a equivalent definition of the boundary maps
in the rational case (see [15]). To see this we will use the following
definition.
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FIGURE 2. The picture obtained using Lemma 3.2.

Let a = p/q € Q with (p,q) = 1 and let 7 € {l,u}. We say that Fy,,
satisfies the a-upper property (respectively, the a-lower property) if
p((Foe)s) = a and ((Fy0)? —p)(x) > @ (respectively, ((Fiu)? - p)(x) <
z) for all z € R

The following theorem resumes most of classical results for the bound-
ary maps.

Theorem A. For each a € R the maps ®;, ¥;, ®} and ¥} are
continuous satisfying that
L B
and
lim &} (b) = lim ¥} (b) = —o0.
b—oo b—o00

Moreover, if a = p/q € Q, with (p,q) = 1, then the following state-
ments hold.

(a) For all b € R* we have that

®;(b) = sup{w € R: (F,,) satisfies the a-upper condition},
@+ (b) = inf{w € R: (Fu)u satisfies the a-lower condition},
Uo(b) = inf{w € R: (Fy.) satisfies the a-lower condition}

s




and
UH(b) = sup{w € R : (F} ). satisfies the a-upper condition}.

(b) Assume that the following conditions hold.

(i) For all b € Rt the map Gy(x) = z+by(z) where y € C"(R,R)
with r > 1

(ii) There is a unique degenerate orbit for (Fy,). (respectively,
(Fyw)t), that is, there is a unique (mod 1) periodic orbit P of
period q and rotation number a holding D, Fy (z) = 1 for all
z el

(iii) If P 1is the (mod 1) periodic orbit of period q and rotation
number a for (Fy)u (respectively, (Fyy)i). Then D,,F,:"w(z) #
0 for all z € P.
Then the maps ®,;, ¥, ,®} and ¥} are uniformly Lipschitz.

3.3. Introducing basic kneading theory to describe the bifur-
cation diagram.

3.3.1. A basic survey on kneading theory. Next, we will use kneading
theory to describe the boundaries of A~ (a) and A*(a) for all a € R.
To see this we introduce some notation about the kneading theory de-
veloped by Alseda and Manosas in [3]. First we recall the notion of
itinerary of a point. In what follows we shall denote the integer part
function by E(-). For z € R we set D(z) = z — E(x).

For F € A and z € R let

R if D(z) € (¢, 1),
_J ¢ itD@)=c,,
()= L i D()ec,)
M if D(z) =0,

and d(z) = E(F(z)) — E(z).

Then the reduced itinerary of z, denoted by Z +(7), is defined as
follows. For i € N, set 5; = s(F(z)) and d; = d(F*~!(z)). Then Zp(z)
is defined by

dids? == ifs; € {L,R} forallt>1,
di'dy ...d5» ifs, € {M,C}and s; € {L,R} forallie {1,... ,n—1}.

Note that since F € £ we have that Ip(z) = I(z +k) for all k € Z.
Next, we define the kneading pair, (see [3]), it characterizes the set
of reduced itineraries (and hence the dynamics) of a map F € A. Thus
the study of the space of all kneading pairs, for maps from A, provides
a way to describe bifurcations for parametrized families of maps from
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A. First, we introduce the following notation. For a point + € R we
define the sequences I («*) and I, (x7) as follows. For each n > 0
there exists 6(n) > 0 such that d(F"~'(y)) and s(F"(y)) take constant
values for each y € (2,2 + 6(n)) (resp. y € (z — d(n),x)). Denote
these values by d(F"~'(x*)) and s(F"(2*)) (resp. d(F"~'(z~)) and
s(F™(x7))). Then we set

I (c*) = d(a*) P V(R () E e
and
Zp(l'_) = d(.’L‘_)S(I"(l‘))d(p(:v—))S(Fi(z_)) -

Let F' € A. The pair (z’_(()*),z,_(c;)) will be called the kneading pair
of F and will be denoted by K(F).

Now, we extend the definition of reduced itinerary to the orientation
preserving circle homeomorphisms as follows. For F € H and z € R
let

e el abDip)=a,

s { L if D(z) £0.
For i € N, set s; = 5(F'(z)) and d; = d(F'~'(x)) (recall that d(z) =
E(F(x)) — E(x)). Then I (z) is defined as

{ dyd3 ... s, =Liorallt >1,
di‘dy® ...dy» ifs,=Mands;=Lforallie{1,...,n—1}.

In this context we define the kneading pair of a map F € H as
(Z,.-(O*),ZF(O‘)). As above it will be denoted by K(F).

The following sequences are used to characterize the rotation interval
by means the kneading pair (see [3, Proposition A]) and we will use its
to characterize the boundaries of the Arnol’d tongues. For a € R we
set €;(a) = E(ia) — E((i — 1)a) and §,(a) = E(ia) — E((i — 1)a), where
E :R —> Z is defined as follows

=\ _ [ El@) ifz¢z,
E(J')_{ zf—Ll ifz € Z.

Also, we set

L(a) = e1(a) ex(a)” . .. en(a)" . ..

and :

I;(a) = 6,(a)“6,(a)" .. .6u(a)" . ..
Let E a)= (Z((a))' and le E(a) denote the sequence that satisfies
(Z(a))' = Ls(a). :
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From now one, K (b,w) denotes z 5 (0%), the first component of

the kneading pair of the map Fy . and K5(b, w) denotes Z

o (c5), the

second one.

3.3.2. Statements of results. The following result, that will be useful to
prove most of the results of the present paper, establishes the definition
of the boundary maps using kneading invariants.

Theorem B. For each a € R,
@ (b) = sup{w € R: K,(b,w) = I (a)},
Yo (b) = inf{w € R: K (b,w) = I;(a)},
&} (b) = inf{w € R : K4(b,w) = I,(a)}
and

W (b) = sup{w € R : K4(b, w) = Z:(a)}

Using the above theorem we shall prove, in 4.3, the next proposition.
It gives a characterization of the bifurcation space in terms of the upper
and lower a-Arnol’d Tongues.

Proposition 3.3. The sets {A~(a)}oer and {A*(a)}aer give a two
partition into closed disjoint sets of the bifurcation plane R* xR. More-
over, for each (b,w) € R* x R. there ezist a,a’ € R, a < @, such that
(b,w) € A= (a) U A*(a').

In [6, Section 4] was introduced two maps in order to study the
existence of superstable periodic orbits. In this sense and in a more
general case we define the maps

@5 (b) = inf{w € R : K,(b,w) = I.(a)}
and

®4(b) = sup{w € R : K;(b, w) = I;(a)}.
Th]e)n we have the following (see Figure 3 and compare with [6, Theorem
4.1]).

Theorem C. Let a € R. Then the maps ®¢ and ®S are continuous

and the following statements hold.

(a) w = ®¢(b) if and only if there exists a periodic (mod. 1) orbit
By, of period q and rotation number a such that 0 € P,,, and
Fb,wlﬁ,,w gy (Fb.W)IIPb.w' :
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a€eQ

a”¢Q ::

®2,(b) = W5, (b) = ¥, (1)

a

1 b

FIGURE 3. The picture obtained using Theorem C.

(b) w = ®&(b) if and only if there exists a periodic (mod. 1) orbit
Py, of period g and rotation number a such that ¢, € Py and
Fb.uv'[’g‘., - (Fb,w)uh’b',,,-

(c) Assume that a = p/q € Q with (p,q) = 1. Then ¥ (b) < ®5(b) <
o7 (b) and @}F(b) < ®8(b) < Wi(b) for all b > 1. Moreover,
@ (b) = ®(b) for all b€ [0,1].

(d) Assume that a ¢ Q. Then ®;(b) = @, (b) and ®S(b) = DF(b) for
all b> 1. Moreover, ®(b) = ®(b) for all b € [0,1].

The next proposition is our version of Proposition 3.5 and Proposi-
tion 5.5 of [6] (see Figure 4).

Proposition 3.4. The following statements hold.

(a) Assume that G, € C*(R,R) for allb € R*. Ifa ¢ Q then ®.(b) >
®F(b) for allb > 1.

(b) Assume that Gy € C'(R,R) for all b € Rt and D,G,\(z) not is a
constant function. If a = p/q € Q, with (p, q) = 1, then ®¢(b) <
@ (b) and ®f(b) < ®8(b) for all b > 1. Moreover, there exist
b, b" € (1,00) such that ®5(b') = ¥ (V') and (b)) = W (b").
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FIGURE 4. The picture obtained using Proposition 3.4.

4. PROOF OF RESULTS

4.1. Proof of Theorem A. First at all, we remark that in the case of
the standard maps family, given by (1), Theorem A(b)(i) holds. From
the fact that F},, has negative Schwarzian derivative, it is not difficult
to see that Theorem A (b)(iii) holds (see [6], for instance). Finally, to see
that Theorem A(b)(ii) is held we have to consider the complexification
of the family given by

= b .
Hyw(z) =2+w+ = sin 272

and then apply the fact that a neutral periodic point zy contains in
its immediate basin of attraction at least one critical point (see for
instance [7, Theorem 2.3]).

PROOF OF THEOREM A. Clearly, the maps ®7, ¥7, ®F and ¥} are-
continuous and this follows the first part of first statement of Theorem
A. Next, from Remark 3.1, (F},)i(0) = w+Gy(0) and (Fyw)u(cs) = w+
Gy(cs). By using (A2)(iii)-(iv) and the definitions of pi and p, we give
that limy_,o p; (w) = 00 and limy_,e0 p; (w) = —00. Since p, (¥ (b)) =
pf (¥F(b)) = a, then ,from the facts that with respect to b the map

o,




pp (w) is non increasing and pi(w) is non-decreasing, we obtain that
limy o0 ¥, (b) = oo and limy_, o Ut(b) = —o0o. The rest of equalities
are obtained using Lemma 3.2(a) and we conclude the second part of
the first statement of Theorem A.

Now, we start with the proof of statements (a) and (b).

Theorem A(a) follows from [15] and as consequence the next corol-
lary, that will be use to prove statement (b), follows in an easy way.

Corollary 4.1. Let a = p/q € Q, with (P,q) = 1, and assume that for
allb € R* the map Gy € C'(R,R). Let w € { @, (b), (D), ¥y (b), U} (b)}
for some b € R*. If P is a periodic (mod. 1) orbit of period q and ro-
tation number a then D.F} (z) =1 for all x € P.

Now, we shall prove Theorem A(b). Assume that wy = B (by)
for some by > 1. Let x5 be the (mod. 1) periodic point of period
¢ and rotation number a. From Proposition 41D B (n) = T
Now, we define the map G : R? x (0,00) — R? as G(z,w,b) =
(F,(z) —x —p, D.F],(x) —1). Clearly, G (29, by, wp) = (0,0). Then

D.F{ ,.(z0) =1 D,F _ (z0) .
bR e D | = bkt eoD R

Since Dy Fy o (x0) =1+ ;’;: {:o 2.5 5 . (F,,"o,u,o(zo)) > 1 and
(ii), by the Implicit Function Theorem, there exists a neighborhood
Uy, of by, Vizg.we) @ neighborhood of (w0, wp) and a C' map f : Uy, —
Vizo,uo) iven by f(b) = (x(b), w(b)) such that G(f(b),b) = (0,0) for all
b € Uy,. Moreover
@) dw(b) D, Fy, (x(b))

db D, F} (z(b)
From (ii) (iii) we have that ®(b) = w(b) for all b € Uy, and the first
part of theorem follows.

Since F:w(b)(x(b)) = x(b) — p = 0, then we can write (4) for b = b,
when Fy,, is a diffeomorphism (i.e. b < 1), as

:

q-1 1

o dw®)| gmv (F,:’,w(,,,(z(b)))
(5) T T e :

% Dy G0) -

using some calculus on Fréchet manifolds (see [12]). Slammert [17] has
obtained (5) in a more efficient way. To prove (5) for any b > 0, it is
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necessary to see that the two following formulas hold for any (b, w,T)

(6) DuF(x) = 3 Ry (Fu@),
9

(7) DbF:'w(I) b ZDF:;l(F;,w(‘E))p(F;,w(I))
i=1

We remark that (6) and (7) follow after some tedious calculus by in-
duction over g. Finally, (5) is obtained from (4) multiplying by

D T F bi,w (13 )

Dbu_w(l‘)
and using the chain rule taking into consideration that if z € P then
D.F} (x)=1fori=12,...,9-1 (see [5]). Therefore,

(g) et

< sup |y(2)|
b 2

and ®; is an uniformly Lipchipz curve. This ends the proof of the
statement (b). B

Remark 4.1. If y(x) = %sin(?m:) (the case of the standard maps
family), the Lipschitz constant given by (8) is equal to o (see [6] and
[9]). Moreover, if we assume that z(b) converges to z(0) when b con-
verges to 0. Then

¥ (20 + 2
. l(lw(b) - ,«=0’Y % q
o0 db q

which coincides with the result proved in [11] (see also [17]).
4.2. Proof of Theorem B.

4.2.1. A characterization of the rotation interval using kneading pairs
implies Theorem B. Let S = {M,L,C, R} and let a = ap . .. be a
sequence of elements a; = dj* of Z x S. We say that a is admissible if
one of the following two conditions is satisfied:
(1) a is infinite, s; € {L, R} for all i > 1 and there exists k € N such
that |d;] < k for all ¢ > 1.
(2) a is finite of length n, s, € {M,C} and s; € {L,R} for all
ie{l,...,n—1}.
Notice that any reduced itinerary is an admissible sequence. Now
we shall introduce some notation for admissible sequences (and hence
for reduced itineraries).
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The cardinality of an admissible sequence ¢ will be denoted by |af (
if o is infinite we write |a| = 00).

We denote by S the shift operator which acts on the set of admissible
sequences of length greater than one as follows : S(a) = arag... if
a = qapag ... . We will write Sk for the k-th iterate of S. Obviously
S* is only defined for admissible sequences of length greater than k.
Clearly, for each = € R we have $™(I(z)) = I.(F"(z)) if |ZF(1:)| >mn.

Let @ = ayas...ay and § = 3,3,... be two sequences of symbols
in Z x S. We shall write o 3 to denote the concatenation of @ and B

(i. e. the sequence @, .. .anfB,8,...). We also shall use the symbols
n times

" to denote Ga.. danda® todenoteaa....

Let a = ayas . . . @y, be a sequence of symbols in Z x S. Set a; = d
fori = 1,2,...,n. Wesay that o is even if Card{i € {1,... ,n}|s; = R}
is even. Otherwise we say that a is odd.

Now we endow the set of admissible sequences with a total ordering.
First set Al < L < C < R. Then we extend this ordering to Z x §
lexicographically. That is, we write d* < t™ if and only if either d < t
ord=tand s < m. Let now @ = ajaz... and § = 3,8, ... be two
admissible sequences such that a # . Then there exists n such that
a, # B, and a; = p; for i = 1,2,...,n— 1. We say that @ < f8 if
either aj@y ... 0, is even and @, < B, OF a1y ... 0y 1S odd and
Gn >0,

The following theorem, proved by Alseda and Maiiosas [3], estab-
lishes the characterization of the rotation interval using the kneading
pair.

Theorem 4.2. Let F € AUH and a,a’ € R. Then Ry = la,d'] if and
only if
Ij(a) < I,(0%) < L(a)
and
Ge) < I (w) < L(a),

where eitheru=c, if FEA oru=0 if FeH.

The next lemma, also proved in [3], will be useful in the proof of
Theorem B.

Lemma 4.3. Let a € R If a ¢ Q then I3(a) = L(a) and Iy(a) =
z(a). Otherwise, if a € Q then I;(a) < I (a) and I4(a) < I, (a).

Now, we shall prove Theorem B as a consequence of the above the-
orem and lemma.

A4h =




PROOF OF THEOREM B. Fix b € R*, from Theorem 4.2, for w € R.

we have that p; (w) = a and i (w) = @' if and only if

Tj(a) < K.(b,w) < I(a)
and
Ii(a') < Ks(b,w) < I (d').

Then, by using the definition of &+ @;, ¥ and ¥; and Lemma 4.4

the theorem follows. g "
4.3. Proof of Proposition 3.3.

4.3.1. The topological space of all kneading pairs for maps from A and
H.. First at all and in order to describe the set of all kneading pairs
for maps from A and H we introduce the following notation. Let
a=d}'a,..., be an admissible sequence then we will denote by o' the
sequence (d, + 1)%aq;... .

Let AD be the set of all admissible infinite sequences. We will denote
by £* the set of all pairs (v, v3) € AD x AD for which the following
conditions hold:

(1) ¥} < v,

(2) v, <S"(y;) <wyforalln>0andie {1,2}.

(3) If for some n > 0, S"(y;) = dR..., then S"(y,) > vy for
i€ {1,2}.

We note that condition (2) says, in particular, that v, and v, are min-
imal and maximal, respectively, according the following definition. Let
a € AD, we say that a is minimal (respectively maxzimal) if and only
if @ < S"(a) (respectively o > S™(a)) foralln € {1,2,... | a| -1}.

As we will see, the above set contains (among others) the kneading
pairs of maps from A with non-degenerate rotation interval. To deal
with some special kneading pairs associated to maps with degenerate
rotation interval we introduce the following sets.

When a = p/q with (p,q) = 1 we denote by In(a) the sequence

(61(a)" .. "sq-l(a)L‘sq(a)R)w

and by fk(a) the sequence which satisfies (Ei(a))' = Zk(a).
Now we set

{(Z(a), (), (T;(a), I(a)), . = -
ga - (z;(a),z’t(a))} =4 = lfa E p/q e Q) Ith (p1Q) p— 1!

(I3(a), Ly(a))} fa¢Q
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and

{(L(a), I (a)), (I5(a), Li(a)),

E= (l;(ﬂ),li(a))} ifa € p/qgeQ, with (p,q) =1, .
{G L} ifa¢Q

Finally we denote by £ the set £*U(U,ecr€,) and by £ the set Uaekga.
From [1, Theorem A] we have that £ (respectively, £ ) is the set of all
kneading pairs for maps from A (respectively, H).

Let « € AD. We will say that o € &, if and only if it is minimal and
satisfies that if for some n > 0, S"(a) = d®... then S"*'(a) > /. In
a similar way, a € &; if and only if it is maximal. From [10, Theorem
3.1.1] it follows that

& ={a € AD: 33 € AD such that (q,f) € £}
and
& = {B € AD : 3a € AD such that (a,p) € £}

We consider &, and €5 endowed with the order topology and let & x &;
be with the product topology. Note that £ and £ are strictly contained
inE x&s :

Now, we consider the maps K, : R* xR — £, and K : Rt xR — &;.
Then we have the following.
Lemma 4.4. The following statements hold.

(a) The maps K and K; are continuous.

(b) Let a € R. For each b € R there ezist wi, ws € R (respectively,
wl,wl € R) such that K (b,w§) = Z((a) and K (b,w§) = _i_;(a)
(respectively, K5(b,w?) = I;(a) and K.(b,wd) = I, (a)).

Proof. The first statement follows using the continuous dependence of

F,,, from the parameter values b and w. Now, from Theorem 4.2, we
have that

(©) £, = Uuer [ I;(@). L(0)]

Fixed b € R*. Assume first that @ ¢ Q,. From Proposition 3.1, there
exists w{ € R such that p, (w§) = a. Then, by using Lemma 4.3 and
Theorem 4.2, K (b,w}) = Zt(a) ='z(a). Now, let a € Q. Since p,
is a continuous non-increasing onto map, from Theorem 4.2, there
exists w € R such that K .(b,w) € [E(a),z((a)]. Let a',a” ¢ Q,
satisfying that ' < a < a”, we have from the above case that there
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exist w$(a'), w{(a") € R such that K(b, wi(a')) = L(a’) = Z;(a') and
K.(b,wi(a")) = Z‘(a") = E(a”). Using that [E(a),ll(a)] is strictly
contained in [Z((a'),z((a")] and the continuity of K, (b,-), statement
(b) follows. B

PROOF OF PROPOSITION 3.3. From Theorem 4.2 we have that
A0 = K ([L@).L@])
and

As(a) = K5 (L@ L(@)] ) -

Since [Z;(a),z:(a)] and [Z,,(a), _I: (a)] are closed sets in & and &, re-
spectively, then, by Lemma 4.4, A.(a) and As(a) are closed sets in
R* x R. This ends the first statement of proposition. To prove the
second we observe that

U (Ada)uAsa)) cR* xR
—oo<a<ae’<oo
Now, let (b,w) € R* x R. be such that Rg,, = [py (w), pif (w)], then
(b, w) € A(p; (0)) U As(p] (w)) and proposition follows. &

4.4. Proof of Theorem C. We start by proving (a), statement (b)
follows in a similar way. Let w = ®5(b), then p; (w) = a and K. (b, w) =

Z((a). We note that we have only the following two possibilities (see
(3]), either

(a) 1F,,.,,(0+) = 11-‘,_,,, (0) = I (a) or
(b) Ip, . (0) = L(a) and I, (0) = ei(a) ex(a)" .. ceg(a)™.

If (a) holds then, by using some continuity arguments, there exists an
open interval U containing w such that I, R (0%) = I Fout (0) = L(a)
for each w' € U, a contradiction. Now, assume that condition (b) holds.
Then, clearly, there exists a periodic (mod. 1) orbit B, of period ¢
and rotation number a such that 0 € Py, and Fyulp,, = (Fow)tlPy -

Now, assume that there exists a periodic (mod. 1) orbit B, of period
¢ and rotation number a such that 0 € P, and Fowlp = (Fowlilp.:

It is not difficult to see that ZF.._,(O) = e1(a)lex(a)t ... e(a)™ and
I FM(O*) = i(a). Moreover, by the definition F},, we have that (Fyu)i =
G, + w. In consequence, we have that if w' < w and w' sufficiently
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close to w then (Fyuw )i < (Fyuw)i, and (Fp,);(0) = p':"w(()) i elosEats
(Fyw)i(0) = F} ,,(0) and

30(0) = (Fo0)i(0) < (Fowr)i(0) = F3,(0)
fori=1,2,...,¢— 1. Since,

(Fou){(0) < (Fo){(0) = p,

then, zpbvw(O) = e(a)les(a)” ... (€g(a) — 1)R... (see [1, Lemma 4.3])
and in consequence K. (b,w') < I.(a). Thus, we can conclude that
w = P4 (b).

Statements (c¢) and (d) follow from the definitions and the charac-
terization of the kneading pairs in A and H given in 4.3.1. 1

4.5. Proof of Proposition 3.4. Statement (a) follows from the non-
existence of wandering intervals for C2 -maps given in [13]. Recall that
J C [0,1] is a wandering interval for F € L if J +Z,F(J)+Z,...
are pairwise disjoint and the w-limit set is not equal to a single (mod.
1) periodic orbit. Note that if F € AN C*R,R) and Rr = {a},
with a ¢ Q, then from 4.3.1 K(F) = (T;(a), I5(a)). Moreover, it is not
difficult to prove that

Is(a) = (1p(0))' = Lp(c,).
In consequence [c,,1] is a wandering interval, a contradiction. Thus,
if G, € C*(R,R), from all said above, K(Fy.,) # (E(a),L(a)) for all
(b,w) € (1,00) x R and, using the definitions of the Arnol’d maps,
Lemma 4.3 and Lemma 3.2(a), we have that ®,(b) > @} (b) for all
=
Finally, to prove the first part of statement (b) recall that from
Theorem C(c) we have that ®5(b) < @ (b). Assume that w = ®5(b) =
& (b). By using Theorem A(a) and Theorem C(a), we have that for
((Fy)! — p)(z) = 0 and the equality holds for € Py, where P, is
a (mod. 1) periodic orbit of period ¢ and rotation number p/q such
that 0 € Py, and (Fyw)ilp, ., = Fowlp,,..- Then, from Corollary 4.1, we
have that D, Fy,(0) = 1, a contradiction, because 0 is a turning critical
point. The inequality ®3(b) > @/ (b) follows in a similar way. From
Theorem C(c), Lemma 3.2 and the characterization of the kneading
pairs for maps in H given in 4.3.1 we have that

@7 (1) = ¥, (1) < (1) = ¥, (1) < ¥ (1) = &7 (1).

We remark that the above inequalities are stricly because the maps are
C' and D, F,,(z) not is a constant map. Since limy_,co UH(b) = —o0
and limy_,o ®(b) = oo, by continuity, there exists &' > 1 such that
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(V) = W (V). In a similar way it follows the existence of b” > 1 such
that ®3(b”) = W7 (b"). This ends the proof of statement (b). g
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