
Abstract

The Proper Generalized Decomposition or, in short, PGD is a technique that reduces

calculation and storage cost drastically and presents some similarities with the Proper

Orthogonal Decomposition, in short POD. It was initially introduced for the analyze

and reduction of statistical and experimental data, the a posteriori decomposition tech-

niques, also known as Karhunen-Loeve Expansion, Singular Value decomposition or

Principal Component Analysis, are now used in the context of model reduction. Its

are also related with the so-called n-best term approximation problem. In this paper

we study and analyze the different mathematical and computational problems appear-

ing in the optimization procedures related with the Proper Generalized Decomposition

and its relative n-best term approximation problem.

Keywords: proper generalized decomposition, tensor product Hilbert space, best ap-

proximation.

1 Introduction

The main goal of this paper is to use of a separated representation of the solution of

a class of elliptic problems, which allows to define a tensor product approximation

basis as well as to decouple the numerical integration of a high dimensional model

in each dimension. The milestone of this methodology is the use of shape functions

given by a tensorial based construction. This fact has advantages as the manipulation

of only one dimensional polynomials and its derivatives, that provides a better com-

putational performance and simplified implementation and use one-dimensional inte-

gration rules. Moreover, it makes possible the solution of models defined in spaces of

more than hundred dimensions in some specific applications. This problem is closely

related with the decomposition of a tensor as a sum of rank-one tensors, that it can be
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considered as a higher order extension of the matrix Singular Value Decomposition.

It is well-known, from the Lax-Milgram Lemma, that if V is a Hilbert space,A(·, ·)
is a bounded, V−elliptic bilinear form on V, and ` ∈ V ′. Then there is a unique

solution of the problem

Find u ∈ V such that A(u, v) = `(v) for all v ∈ V. (1)

A generalized paradigm is that if V = V1 ⊗ . . . ⊗ Vd then the intensive use of tensor

techniques can help to the computer scientist to ”avoid the curse of dimensionality”.

The Proper Generalized Decomposition (PGD) method has been recently proposed

[1, 17, 21] for the a priori construction of separated representations of an element u in

a tensor product space V = V1 ⊗ . . .⊗ Vd, which is the solution of a problem of type

(1) with a symmetric bilinear form. A rank-n approximated separated representation

un of u is defined by

un =
n∑

i=1

v1
i ⊗ . . .⊗ vd

i (2)

The concept of separated representation was introduced by Beylkin and Mohlenkamp

in [4] and it is related with the problem of constructing the approximate solutions of

some classes of problems in high-dimensional spaces by means a separable function.

In particular, for a given map

u : [0, 1]d ⊂ R
d −→ R,

we say that it has a separable representation if

u(x1, . . . , xd) =
∞∑

j=1

u
(j)
1 (x1) · · · u

(j)
d (xd) (3)

Now, consider a mesh of [0, 1] in the xk-variable given by Nk-mesh points, 1 ≤ k ≤ d,
then we can write a discrete version of (3) by

u(xi1 , . . . , xid) =
∞∑

j=1

u
(j)
1 (xi1) · · ·u

(j)
d (xid), (4)

where 1 ≤ ik ≤ Nk for 1 ≤ k ≤ d. Observe that for each 1 ≤ k ≤ d, if x
j
k ∈ R

Nk

denotes the vector with components u
(j)
k (xik) for 1 ≤ ik ≤ Nk, then (4) it is equivalent

to

u =
∞∑

j=1

x
j
1 ⊗ · · · ⊗ x

j
d. (5)

We point out that (5) is an useful expression to implemented numerical algorithms

using the MATLAB and OCTAVE function kron.
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This paper is organized as follows. In the next section we introduce the tensor

product Hilbert spaces. In Section we give the definition of progressive representation

in tensor product Hilbert spaces and introduce the existence theorem for the progres-

sive separated representation in Tensor Product Hilbert Spaces using a class of energy

functionals. Next, in 4 we propose two algorithms in order to construct the PGD ap-

proach for general elliptic problems. Finally, in Section 5 some numerical examples

are given.

2 Tensor product sums on tensor product Hilbert spaces

Let V =
⊗d

i=1 Vi be a tensor product Hilbert space where Vi, for i = 1, 2, . . . , d, are

separable Hilbert spaces. We denote by (·, ·) and ‖ · ‖ a general inner product on V
and its associated norm. We introduce norms ‖ ·‖i and associated inner products (·, ·)i

on Vi, for i = 1, 2, . . . , d. These norms and inner products define a particular norm on

V , denoted ‖ · ‖V , defined by

‖ ⊗d
i=1 vi‖V =

d∏

i=1

‖vi‖i,

for all (v1, v2, . . . , vd) ∈ V, where V is the product space V1×· · ·×Vd. The associated

inner product (·, ·)V is defined by

(
⊗d

i=1ui,⊗
d
i=1vi

)
V

=
d∏

i=1

(ui, vi)i,

Recall that V , endowed with inner product (·, ·)V , is in fact constructed by taking the

completion under this inner product.

Now, we introduce the set of V of vectors that can be written as a sum of tensor

rank 1 elements. For each n ∈ N, we define the set of rank-n tensors

Sn = {u ∈ V : rank⊗u ≤ n},

introduced in [11] in the following way. Given u ∈ V we say that u ∈ S1 if u =
u1 ⊗ u2 ⊗ · · · ⊗ ud, where ui ∈ Vi, for i = 1, . . . , d. For n ≥ 2 we define inductively

Sn = Sn−1 + S1, that is,

Sn =

{
u ∈ V : u =

k∑

i=1

u(i), u(i) ∈ S1 for 1 ≤ i ≤ k ≤ n

}
.

Note that Sn ⊂ Sn+1 for all n ≥ 1. We will say for u ∈ V that rank⊗u = n if and

only if u ∈ Sn \ Sn−1.

We first consider the following important property of the set S1 and inner product

‖ · ‖V .
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Lemma 1 S1 is weakly closed in (V, ‖ · ‖V ).

Since equivalent norms induce the same weak topology on V , we have the follow-

ing corollary.

Corollary 2 If the norm ‖ · ‖ on V is equivalent to the norm ‖ · ‖V , then S1 is weakly

closed in (V, ‖ · ‖).

Corollary 3 If the Vi are finite-dimensional vectors spaces, then S1 is weakly closed

in (V, ‖ · ‖) whatever the norm ‖ · ‖.

3 An existence theorem for the progressive separated

representation in Tensor Product Hilbert Spaces us-

ing a class of energy functionals

Now we want to construct a class of energy functional on S1, with respect to a given

inner product (·, ·) on V , with associated norm ‖ · ‖. The results of this section are due

to Falcó and Nouy [10]. We make the following assumption on the inner product.

Assumption 4 We consider that the inner product (·, ·), with associated norm ‖ · ‖, is

such that S1 is weakly closed in (V, ‖ · ‖).

Let us recall that by Corollary 2, the particular norm ‖ · ‖V verifies Assumption 4.

Now, we introduce for the norm ‖ · ‖ and for each r ∈ V the functional Er : V −→ R

by

Er(v) =
1

2
‖v‖2 − (r, v) =

1

2
‖r − v‖2 −

1

2
‖r‖2.

The following result gives the main properties of the energy functional Er.

Theorem 5 For each r ∈ V there exists v∗ ∈ S1 such that

Ez(v
∗) = min

v∈S1

Ez(v). (6)

Moreover,

Ez(v
∗) = −

1

2
‖v∗‖2, (7)

‖z − v∗‖2 = ‖z‖2 − ‖v∗‖2, (8)

and

(r − v∗, v∗) = 0. (9)
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Definition 6 (Progressive separated representation of u ∈ V ) For a given z ∈ V,
take z0 = 0 and for n ≥ 1, proceed as follows:

rn = z − zn−1 (10)

zn = zn−1 + vn, where vn ∈ argminv∈S1
Ern

(v). (11)

zn is called an optimal rank-n progressive separated representation of z with respect

to the norm ‖ · ‖.

We introduce the following definition of the progressive rank. Note that in general,

the progressive rank of an element z ∈ V is different from the optimal rank rank⊗(z).

Definition 7 (Progressive rank) We define the progressive rank of an element u ∈ V ,

denoted by rankσ(z), as follows:

rankσ(z) = min{n : zn = 0} (12)

where zn is the progressive separated representation of z, defined in definition 6, where

by convention min(∅) =∞.

Theorem 8 (Existence of the Progressive Separate Representation) For z ∈ V , the

sequence {zn =
∑n

i=1 vi}n>0 defined in definition 6 verifies:

z = lim
n→∞

zn = zrankσ(z) =

rankσ(z)∑

i=1

vi.

Moreover, for each 0 ≤ n ≤ rankσ(z)− 1 it follows

‖z − zn‖
2 = ‖z‖2 −

n∑

i=1

‖vi‖
2 =

rankσ(z)∑

i=n+1

‖vi‖
2 (13)

and

‖rn‖

‖z‖
=

n−1∏

j=1

sin θi, (14)

where θi is the angle between ri and vi, that is,

θi = arccos
(ri, vi)

‖ri‖‖vi‖
.
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4 A variational formulation of the Proper Generalized

Decomposition

4.1 Formulation of the problem

We consider the following variational problem, defined on the a tensor product Hilbert

space (V, ‖ · ‖V ):

u ∈ V, A(u, v) = `(v) ∀v ∈ V (15)

where A(·, ·) : V × V −→ R is a continuous, V−elliptic bilinear form, i.e. such that

for all u, v ∈ V,

|A(u, v)| ≤M‖u‖V ‖v‖V , (16)

A(v, v) ≥ α‖v‖2V (17)

for constants M > 0 and α > 0.

Now, we introduce the operator A : V −→ V associated with A, and defined by

A(u, v) = (Au, v)V (18)

for all u, v ∈ V. We also introduce the element l ∈ V associated with L and defined

by

`(v) = (l, v)V (19)

for all v ∈ V.. The existence of A and l is ensured by the Riesz representation theorem.

Problem (15) can be rewritten in an operator form:

Au = l (20)

4.2 The Proper Generalized Decomposition a continuous, V−elliptic

bilinear symmetric form

Assume that for all u, v ∈ V,

A(u, v) = A(v, u). (21)

From the assumptions on the bilinear form A(·, ·), we know that A is bounded, self-

adjoint, and positive definite. As usual, we will denote by (·, ·)A the inner product

induced by the operator A, where for all u, v ∈ V

(u, v)A = (Au, v)V = (u,Av)V ,

We denote by ‖u‖A = (u, u)
1/2
A the associated norm. Note that if A = I the identity

operator, then ‖ · ‖A = ‖ · ‖V .
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From properties of operator A, the norm ‖ · ‖A is equivalent to ‖ · ‖V . Therefore,

by Corollary 2, the set S1 is weakly closed in (V, ‖ · ‖A) and then, ‖ · ‖A verifies

assumption 4. Then we consider in this case for each r ∈ V the map

EA−1r(v) =
1

2
‖v‖A − (A−1r, v)A =

1

2
‖v‖A − (r, v)V .

Definition 9 (PGD for self-adjoint operators) Let z0 = 0 and for n ≥ 1,

rn = l − Azn−1 (22)

zn = zn−1 + vn, where vn ∈ argminv∈S1
EA−1rn

(v). (23)

From Theorem 8 we obtain that

lim
n→∞

‖A−1rn‖A = 0,

that is limn→∞ zn = A−1l in the ‖ · ‖A-norm. Since ‖ · ‖A is equivalent to ‖ · ‖V , then

the sequence {zn}n≥0 also converges to A−1l in the ‖ · ‖V -norm. Observe, that the

convergence rate given in (14) is ‖ · ‖A-norm dependent, more precisely,

‖A−1rn‖A
‖A−1l‖A

=
n−1∏

j=1

sin θi,

where

θi = arccos
(A−1ri, zi)A

‖A−1ri‖A‖zi‖A
.

A natural question arises in this context: How we compute a minimum of EA−1r

over S1 for a given r ∈ V ? Note that if

v =
d⊗

i=1

vi ∈ argminz∈S1
EA−1r(z)

then

d

dt
EA−1r

(
d⊗

i=1

(vi + twi)

)∣∣∣∣∣
t=0

= 0 (24)

holds for all (w1, . . . , wd) ∈ V1 × · · · × Vd. Equation (24) is equivalent to show that

the following Euler-Lagrange Equation:

d∑

i=1

(
r − A

(
d⊗

i=1

vi

)
, v1 ⊗ · · · ⊗ vi−1 ⊗ wi ⊗ vi+1 ⊗ · · · ⊗ vi

)

V

= 0 (25)

holds for all (w1, . . . , wd) ∈ V1 × · · · × Vd.
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4.2.1 A special case

Now, assume that A =
∑nA

k=1

⊗d
i=1 Ak

i and r =
∑nr

k=1⊗
d
i=1r

k
i are given also in rank-

one form. Then the Euler-Lagrange equation appears as

d∑

i=1

(
nr∑

k=1

d∏

j=1,j 6=i

(rk
j , vj)jr

k
i −

nA∑

s=1

d∏

j=1,j 6=i

(As
jvj, vj)jA

s
ivi, wi

)

i

= 0 (26)

for all (w1, . . . , wd) ∈ V1 × · · · × Vd. Then

(
nr∑

k=1

d∏

j=1,j 6=i

(rk
j , vj)jr

k
i −

nA∑

s=1

d∏

j=1,j 6=i

(As
jvj, vj)jA

s
ivi, wi

)

i

= 0 (27)

for 1 ≤ i ≤ d and for all (w1, . . . , wd) ∈ V1×· · ·×Vd. Now, consider an n-dimensional

subspace span {w1
i , . . . , w

n
i } of Vi, for each 1 ≤ i ≤ d, and define the vector vi ∈ R

n

by means

(vi)α = υα
i where vi =

n∑

α=1

υα
i wα

i .

On the other hand introduce the symmetric matrices A
s
j ∈ R

n×n and the vectors r
k
j ∈

R
n by

(As
j)α,β = (As

jw
β
j , wα

j )j and (rk
j )α = (rk

j , w
α
j )j.

Note that we can write

(rk
1 ⊗ · · · ⊗ r

k
d)α1,...,αd

=
d∏

j=1

(rk
j , w

αj

j )j =
(
⊗d

j=1r
k
j ,⊗

d
j=1w

αi

j

)
V

,

for 1 ≤ k ≤ nr.

Under the above notation the PGD run as follows. Start with u = 0 ∈ R
nd

and

rk
j = lkj , here we assume that l =

∑nl

k=1⊗
d
i=1l

k
i , thus nr = nl. Then we compute

{v1, . . . ,vd} ⊂ R
n as follows. Note, that (27) can be written as

nr∑

k=1

d∏

j=1,j 6=i

〈rk
j ,vj〉2 r

k
i −

nA∑

s=1

d∏

j=1,j 6=i

〈vj, A
s
jvj〉2 A

s
ivi = 0 (28)

for 1 ≤ i ≤ d, here 〈·, ·〉2 denotes the usual inner product in R
2. The strategy to solve

the above non-linear system can be seen in Algorithm ??.

From Algorithm ?? we can update the solution u = u + v1 ⊗ · · · ⊗ vd and the

residual by consider nr = nr + nA and

r
nr+k
j = A

k
jvj for 1 ≤ k ≤ nA and 1 ≤ j ≤ d.
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We remark that under this notation we have

(Ak
1v1 ⊗ · · · ⊗ A

k
dvd)α1,...,αd

=
d∏

j=1

(Ak
jvj)αj

=
d∏

j=1

(
Ak

j vj, w
αj

j

)
j

=
(
⊗d

j=1A
k
j vj,⊗

d
j=1w

αj

j

)
V

for 1 ≤ k ≤ nA. In consequence at step N ≥ 1 the residual can be written as

rN =
nr∑

k=1

⊗d
j=1r

k
j ∈ R

nd

,

where nr = nr + NnA. The proposal algorithm is given in Algorithm 1.

4.3 The Proper Generalized Decomposition a continuous, V−elliptic

bilinear form

We consider for each r ∈ V the map

Er(Av) = (Er ◦ A)(v)

=
1

2
‖Av‖V − (r, Av)V

=
1

2
‖v‖A∗A − (A∗r, v)V

=
1

2
‖v‖A∗A − ((A∗A)−1A∗r, v)A∗A.

Thus since A∗A is a self-adjoint operator, then the norm ‖ · ‖A∗A is equivalent to

the ‖ · ‖V -norm and in consequence S1 is also weakly closed in the ‖ · ‖A∗A-norm.

Moreover, (Er ◦A) in the ‖ · ‖V -norm is equal to E(A∗A)−1A∗r(v) in the ‖ · ‖A∗A-norm.

Definition 10 (PGD for non self-adjoint operators) Let z0 = 0 and for n ≥ 1,

rn = b− Azn−1 (29)

zn = zn−1 + vn, where vn ∈ arg min
v∈S1

Ern
(Av). (30)

From Theorem 8 we obtain

lim
n→∞

‖(A∗A)−1A∗rn‖A∗A = lim
n→∞

‖A(A∗A)−1A∗rn‖V = lim
n→∞

‖rn‖V = 0.
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Thus, in this case the sequence {zn}n≥0 also converges to the solution A−1l in the

‖ · ‖V -norm. Here the convergence rate (14) is given by the expression:

‖(A∗A)−1A∗rn‖A∗A

‖(A∗A)−1A∗b‖A∗A

=
‖rn‖V
‖b‖V

=
n−1∏

j=1

sin θi, ,

where

θi = arccos
((A∗A)−1A∗ri, vi)A∗A

‖(A∗A)−1A∗ri‖A∗A‖vi‖A∗A

= arccos
(ri, Avi)V

‖ri‖V ‖Avi‖V

In order to solve the associated minimization problem for a given r ∈ V, we have that

if
d⊗

i=1

vi ∈ argminz∈S1
Er(Az)

then the following Euler-Lagrange equation

d∑

i=1

(
A∗r − A∗A

(
d⊗

i=1

vi

)
, v1 ⊗ · · · ⊗ vi−1 ⊗ wi ⊗ vi+1 ⊗ · · · ⊗ vi

)

V

= 0,

or equivalently

d∑

i=1

(
r − A

(
d⊗

i=1

vi

)
, A(v1 ⊗ · · · ⊗ vi−1 ⊗ wi ⊗ vi+1 ⊗ · · · ⊗ vi)

)

V

= 0 (31)

holds for all (w1, . . . , wd) ∈ V1 × · · · × Vd.

4.3.1 A special case

Now, assume that A =
∑nA

k=1

⊗d
i=1 Ak

i and r =
∑nr

k=1⊗
d
i=1r

k
i are given also in rank-

one form. Then the Euler-Lagrange equation appears as

d∑

i=1

nA∑

s=1

(
nr∑

k=1

d∏

j=1,j 6=i

(rk
j , A

s
jvj)jr

k
i −

nA∑

t=1

d∏

j=1,j 6=i

(At
jvj, A

s
jvj)jA

t
ivi, A

s
iwi

)

i

= 0

(32)

for all (w1, . . . , wd) ∈ V1 × · · · × Vd. Then

nA∑

s=1

(
nr∑

k=1

d∏

j=1,j 6=i

(rk
j , A

s
jvj)jr

k
i −

nA∑

t=1

d∏

j=1,j 6=i

(At
jvj, A

s
jvj)jA

t
ivi, A

s
iwi

)

i

= 0 (33)

for 1 ≤ i ≤ d and for all (w1, . . . , wd) ∈ V1 × · · · × Vd. In a similar way as in the

symmetric case, let be consider an n-dimensional subspace span {w1
i , . . . , w

n
i } of Vi,

for each 1 ≤ i ≤ d, and in this case we define the vector vi ∈ R
n as follows:

(vi)α = υα
i where vi =

n∑

α=1

υα
i wα

i .
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In this case, the symmetric matrix A
k,i
j ∈ R

n×n and the vector r
k.i
j ∈ R

n are

(Ak,i
j )α,β = (Ak

j w
β
j , Ai

jw
α
j )j and (rk,i

j )α = (rk
j , A

i
jw

α
j )j.

Now, (33) with this notation can be written as follows

nA∑

s=1

nr∑

k=1

d∏

j=1,j 6=i

〈rk,s
j ,vj〉2 r

k,s
i −

nA∑

t=1

d∏

j=1,j 6=i

〈vj, A
t,s
j vj〉2 A

t,s
i vi = 0 (34)

for 1 ≤ i ≤ d. The proposal algorithm is given in Algorithm 2.

5 A case study: The first passage time and the Poisson

equation in (0, 1)d

Our first case to study is based on the well-known FeynmanKac representation of

the solution to the Dirichlet problem for Poissons equation. Recall that the Dirichlet

problem for Poissons equation is

{
−∆u = f in Ω ⊂ R

d

u|∂Ω = 0.
(35)

where f = f(x1, x2, . . . , xd) is a given function and ∆ =
∑d

i=1
∂2

∂x2

i

is the Laplace

operator. The solution of this problem at x0 ∈ R
d, given in the form of the path-

integral with respect to standard d-dimensional Brownian motion Wt is as follows

u(x0) = E

[∫ τ∂Ω

0

2f(Wt)dt

]
(36)

Here

τ∂Ω = inf{t : Wt ∈ ∂Ω}

is the first-passage time and Wτ∂Ω
is the first-passage location on the boundary, ∂Ω.

We assume that E[τ∂Ω] < ∞ for all x0 ∈ Ω and f and u are continuous and bounded

in Ω, and that the boundary, ∂Ω, is sufficiently smooth so as to ensure the existence

of a unique solution, u(x), that has bounded and continuous first- and second-order

partial derivatives in any interior subdomain

Example 11 Firstly, we consider the following problem in 3D: Solve for

(x1, x2, x3) ∈ Ω = (0, 1)3 :

−∆u = (2π)2 · 3 · sin(2πx1 − π) sin(2πx2 − π) sin(2πx3 − π), (37)

u|∂Ω = 0, (38)
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Figure 1: The relative error ‖u1 − A−1
f‖2/‖A

−1
f‖2 in logarithmic scale.

which has as closed form solution

u(x1, x2, x3) = sin(2πx1 − π) sin(2πx2 − π) sin(2πx3 − π).

We used the separable representation Algorithm 1) with parameter values iter max =
5, rank max = 1000 and ε = 0.001. The algorithm give us an approximated solution

u1 ∈ S1. In Figure 1 we represent the relative error of the solution computed using

the separable representation algorithm, using logarithmic scale, as a function of the

number of nodes used in the discretization of the Poisson equation. All the computa-

tions were performed using the GNU software OCTAVE in a AMD 64 Athlon K8 with

2Gib of RAM.

In Figure 2 we represent the CPU time, in logarithmic scale, used in solving the

standard FEM linear system against the separable representation algorithm. In both

cases all the linear systems involved were solved using the standard linear system

solver (A\b) of OCTAVE.

Example 12 Finally we are addressing some highly multidimensional models. To this

end we solve numerically (35) for (x1, . . . , xd) ∈ Ω = (0, π)d where

f =
d∑

k=1

−(1 + k) sin(−1+k)(xk)
(
−k cos2(xk) + sin2(xk)

) d∏

k′=1,k′ 6=k

sin(1+k′)(xk′),

12



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000 12000 14000

lo
g
1
0
(C

P
U

 t
im

e
 i
n
 s

e
c
o
n
d
s
)

Nodes in (0,1)
3

Greedy Rank-One Update
 Octave A\b 

Figure 2: The CPU time, in seconds, used in solving the linear system as a function

of the number of nodes employed in the discretization of the Poisson Equation.

which has as closed form solution

u(x1, . . . , xd) =
d∏

k=1

sin(k+1)(xk).

Here we consider the true solution u given by Ui1,...,id = u(x̂i1+1, . . . , x̂id+1). For d =
10 we use the parameter values iter max = 2, rank max = 10 and ε = 0.001.
In a similar way as above the algorithm give us an approximated solution û ∈ S1.
In Figure 3 we represent the absolute error ‖û − u‖2 as a function of h = π/N for

N = 5, 10, 20, . . . , 160 in log10-scale. By using similar parameters values the problem

has been solved for d = 100 in about 20 minutes.
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Algorithm 1 PGD symmetric case

1: procedure PGDSYM(
∑nl

k=1⊗
d
j=1l

k
j ,
∑nA

k=1

⊗d
j=1 Ak

j , ε,tol,rank max)

2: (As
j)α,β = (As

jw
β
j , wα

j )j for 1 ≤ j ≤ d and 1 ≤ s ≤ nA.

3: (rk
j )α = (lkj , w

α
j )j for 1 ≤ j ≤ d and 1 ≤ k ≤ nl.

4: u = 0

5: for i = 0, 1, 2, . . . ,rank max do

6: Initialize v
0
i ∈ R

n for i = 1, 2 . . . , d. . We solve minv∈S1
EA−1rn

(v) by a

fixed point strategy

7: distance← 1.
8: while distance ≥ ε do

9: for k = 1, 2, . . . , d do

10: v
1
k ← v

0
k

11: v
0
k ←

[∑nA

s=1

∏d
j=1,j 6=k〈vj, A

s
jvj〉2 A

s
k

]−1∑nl

c=1

∏d
j=1,j 6=k〈r

c
j,vj〉2 r

c
k

12: end for

13: distance← max1≤i≤d ‖v
0
i − v

1
i ‖2

14: end while

15: u← u + v
0
1 ⊗ · · · ⊗ v

0
d

16: for k = 1, . . . , nA do . We update the residual

17: r
nl+k
j = −A

k
jv

0
j for 1 ≤ j ≤ d.

18: end for

19: nl ← nl + nA. . Here we update the residual tensor rank

20: residual(i) =
∑nl

k=1

∏d
j=1 ‖r

k
j‖2

21: if residual(i) < ε or |residual(i) − residual(i)| < tol

then goto 13

22: end if

23: end for

24: return u and residual(rank max)

25: break

26: return u and residual(i)

27: end procedure
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Algorithm 2 PGD non-symmetric case

1: procedure PGD(
∑nl

k=1⊗
d
j=1l

k
j ,
∑nA

k=1

⊗d
j=1 Ak

j , ε,tol,rank max)

2: (Ak,i
j )α,β = (Ak

j w
β
j , Ai

jw
α
j )j for 1 ≤ j ≤ d and 1 ≤ k, i ≤ nA.

3: (rk,i
j )α = (lkj , A

i
jw

α
j )j for 1 ≤ j ≤ d, 1 ≤ k ≤ nl and 1 ≤ i ≤ nA.

4: u = 0

5: for i = 0, 1, 2, . . . ,rank max do

6: Initialize v
0
i ∈ R

n for i = 1, 2 . . . , d. . We solve minv∈S1
EA−1rn

(v) by a

fixed point strategy

7: distance← 1.
8: while distance ≥ ε do

9: for k = 1, 2, . . . , d do

10: v
1
k ← v

0
k

11:

v
0
k ←

[
nA∑

s=1

nA∑

t=1

d∏

j=1,j 6=k

〈vj, A
t,s
j vj〉2 A

t,s
k

]−1 nA∑

s=1

nr∑

c=1

d∏

j=1,j 6=k

〈rc,s
j ,vj〉2 r

c,s
k

12: end for

13: distance← max1≤i≤d ‖v
0
i − v

1
i ‖2

14: end while

15: u← u + v
0
1 ⊗ · · · ⊗ v

0
d

16: for k = 1, . . . , nA do . We update the residual

17: r
nl+k,s
j = −A

k,s
j v

0
j for 1 ≤ j ≤ d and 1 ≤ s ≤ nA.

18: end for

19: nl ← nl + nA. . Here we update the residual tensor rank

20: residual(i) ==
∑nl

k=1

∏d
j=1 ‖r

k
j‖2

21: if residual(i) < ε or |residual(i) − residual(i)| < tol

then goto 13

22: end if

23: end for

24: return u and residual(rank max)

25: break

26: return u and residual(i)

27: end procedure
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