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Abstract In this paper we study the convergence of the well-known Greedy Rank-

One Update Algorithm. It is used to construct the rank-one series solution for full-

rank linear systems. The existence of the rank one approximations is also not new,

but surprisingly the focus there has been more on the applications side more that

in the convergence analysis. Our main contribution is to prove the convergence of

the algorithm and also we study the required rank one approximation in each step.

We also give some numerical examples and describe its relationship with the Finite

Element Method for High-Dimensional Partial Di�erential Equations based on the

tensorial product of one-dimensional bases. We illustrate this situation taking as a

model problem the multidimensional Poisson equation with homogeneous Dirichlet

boundary condition.

Keywords Separated Representation · Greedy Approximation · Kronecker Product

This work has been partially supported by the SEJ2006-05051 grant of the Ministerio de
Educación y Ciencia and PRCEU-UCH07/08 grant of the Universidad CEU Cardenal Herrera.

A.Ammar
Laboratoire de Rhéologie, INPG, UJF, CNRS (UMR 5520)
1301 rue de la piscine
BP 53 Domaine universitaire
F-38041 Grenoble Cedex 9, France. E-mail: Amine.Ammar@ujf-grenoble.fr

F.Chinesta
Institut de Recherche en Génie Civil et Mécanique (GeM)
Ecole Centrale de Nantes
1 rue de la Noë
BP 92101 44 321 Nantes Cédex 3, France. E-mail: Francisco.Chinesta@ec-nantes.fr

A. Falcó
Departamento de Ciencias, Físicas, Matemáticas y de la Computación
Universidad CEU Cardenal Herrera
San Bartolomé 55
46115 Alfara del Patriarca (Valencia), Spain. E-mail: afalco@uch.ceu.es



2

1 Introduction

In [1] and [2], some of the authors of the present paper propose the use of a sepa-

rated representation, which allows to de�ne a tensor product approximation basis as

well as to decouple the numerical integration of a high dimensional model in each di-

mension. The milestone of this methodology is the use of shape functions given by

a tensorial based construction. This fact has advantages as the manipulation of only

one dimensional polynomials and its derivatives, that provides a better computational

performance and simpli�ed implementation and use one-dimensional integration rules.

Moreover, it makes possible the solution of models de�ned in spaces of more than hun-

dred dimensions in some speci�c applications. This problem is closely related with the

decomposition of a tensor as a sum of rank-one tensors, that it can be considered as a

higher order extension of the matrix Singular Value Decomposition.

The purpose of this work is to formalize and analyze the above strategy in the

framework of methods for solving linear systems by means tensor decompositions. As

we will show the approximation given in [1] and [2], is closely related with the best

low-rank approximation problem for high order tensors (see [4]). Unfortunately, in

[4] it has been proved that tensors of order 3 or higher can fail to have best rank-r

approximation for r ≥ 2. Our strategy, with the perspective of [4] in mind, is to use

the fact that tensors of order 3 or higher have best rank-1 approximation.

In this context, we propose the use of a Greedy Rank-One Update Algorithm to

construct, for a full rank linear system, a rank-r approximate solution. This approach

is based in the so-called by the signal processing community as the Matching Pursuit

Algorithm of Mallat and Zhang [12], also known as Projection Pursuit by the statistics

community (see Friedman and Stuezle [7] and Huber [8]) or as a Pure Greedy Algorithm

(see the recent survey of Temlyakov [14]) in the approximation theory community. Our

main contribution, stated in Theorem 1, is to prove the convergence of this Greedy

rank-one update algorithm. and characterize the speed of convergence in terms of a

sequence of angles. This strategy depends strongly on the computation of the best

rank-1 approximation of the residual obtained at each step of the proposed algorithm.

To solve this we will propose the use of a Block Coordinate Descend Method, because

it has global convergence. In particular, we will show that for the class of invertible

matrices, this problem collapses, for each selected direction, to an ordinary least-squares

problem. We remark that this strategy appears to be identical to so-called Alternating

Least Squares (ALS) method proposed in [3] for the class of separable matrices (see

statement of Corollary 1 below).

In [9] an orthogonal Greedy tensor decomposition has been used in order to compute

a rank-r approximation. However, as the author points out, the computational di�culty

of this approach arises in enforcing the constrains of the rank-one approximation needed

at each step of the proposed algorithm. Zhang and Golub [16], also explores various

computational techniques when the tensor has a completely orthogonal decomposition,

in which case the problem is more simpler. All these methods use an ALS Approach for

computing the rank-one approach. On the other hand, the approach following in this

paper di�ers from the [11] based in the associated Lagrange Equations to the minimum

least-squares cost function.

This paper is organized as follows. In the next section we introduce the notation

used in this paper and give our main result, the convergence of the Greedy Rank-One

Update Algorithm for solving full rank linear systems. In Section 3 we study the rank-

one approach, in particular we prove that a Block Cyclic Coordinate Descend strategy



3

implies an ALS Algorithm. Section 4.1 is dedicated to give some numerical examples

of the above algorithms and describe its relationship with the Finite Element Method

for High-Dimensional Partial Di�erential Equations based on the tensorial product

of one-dimensional bases. We illustrate this situation taking as a model problem the

multidimensional Poisson equation with homogeneous Dirichlet boundary condition.

We conclude with some comments and remarks.

2 De�nitions and Statement of Main Result

First at all we introduce some notation. We denote by RN×M , the set of N×M -matrices

and by AT the transpose of a given matrix A. As usual we use

〈x,y〉 = xT y = yT x

to denote the Euclidean inner product in RN , and its corresponding 2-norm, by ‖x‖2 =

〈x,x〉1/2. Let IN be the N × N -identity matrix and when the dimension is clear from

the context, we simply denote it by I. Given a sequence {uj}∞j=0 ⊂ RN , we say that a

vector u ∈ RN can be written as

u =
∞
X

j=0

uj

if and only if

lim
n→∞

n
X

j=0

uj = u

in the ‖·‖2-topology. Now, we recall the de�nition and some properties of the Kronecker

product. The Kronecker product of A ∈ RN ′
1×N1 and B ∈ RN ′

2×N2 , written A ⊗ B, is

the tensor algebraic operation de�ned as

A ⊗ B =

2

6

6

6

6

4

A1,1B A1,2B · · · A1,N ′
1
B

A2,1B A2,2B · · · A2,N ′
1
B

...
...

. . .
...

AN1,1B AN1,2B · · · AN1,N ′
1
B

3

7

7

7

7

5

∈ RN ′
1N ′

2×N1N2 .

Also, it can be de�ned by

(A ⊗ B)(j1−1)N ′
2+j2;(i1−1)N2+i2 = Aj1;i1Bj2;i2 . (1)

Assume that Ai ∈ RN ′
i×Ni for 1 ≤ i ≤ d. Proceeding inductively we show that

(A1 ⊗ · · · ⊗ Ad)s,t = (A1)j1,i1 · · · (Ad)jd,id

if and only if s and t satisfy

s = jd +

d−1
X

l=1

2

4(jl − 1)

d
Y

l′=l+1

N ′
l′

3

5 and t = id +

d−1
X

l=1

2

4(il − 1)

d
Y

l′=l+1

Nl′

3

5 . (2)

Finally, we list some of the well-know properties of the Kronecker product (see for

example [5] or [15]).



4

1. A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

2. (A + B) ⊗ (C + D) = (A ⊗ C) + (B ⊗ C) + (A ⊗ D) + (B ⊗ D).

3. AB ⊗ CD = (A ⊗ C)(B ⊗ D).

4. (A ⊗ B)−1 = A−1 ⊗ B−1.

5. (A ⊗ B)T = AT ⊗ BT .

6. If A and B are banded, then A ⊗ B is banded.

7. If A and B are symmetric, then A ⊗ B is symmetric.

8. If A and B are de�nite positive, then A ⊗ B is de�nite positive.

The concept of separated representation was introduced by Beylkin and Mohlenkamp

in [3] and it is related with the problem of constructing the approximate solutions of

some classes of problems in high-dimensional spaces by means a separable function. In

particular, for a given map

u : [0, 1]d ⊂ Rd −→ R,

we say that it has a separable representation if

u(x1, . . . , xd) =

∞
X

j=1

u
(j)
1 (x1) · · ·u

(j)
d (xd) (3)

Now, consider a mesh of [0, 1] in the xk-variable given by Nk-mesh points, 1 ≤ k ≤ d,

then we can write a discrete version of (3) by

u(xi1 , . . . , xid
) =

∞
X

j=1

u
(j)
1 (xi1) · · ·u

(j)
d (xid

), (4)

where 1 ≤ ik ≤ Nk for 1 ≤ k ≤ d. Observe that for each 1 ≤ k ≤ d, if xj
k ∈ RNk

denotes the vector with components u
(j)
k (xik

) for 1 ≤ ik ≤ Nk, then (4) it is equivalent

to

u =

∞
X

j=1

xj
1 ⊗ · · · ⊗ xj

d. (5)

We point out that (5) is an useful expression to implemented numerical algorithms

using the Matlab and Octave function kron.

Suppose that for given a linear Partial Di�erential Equation, and after a discretiza-

tion by means Finite Elements, we need to solve the linear system

Au = f , (6)

where A is a (N1 · · ·Nd)×(N1 · · ·Nd)-dimensional invertible matrix, for some N1, . . . , Nd ∈
N. Then from all said above a low rank approximation

A−1f ≈ un =
n
X

j=1

xj
1 ⊗ · · · ⊗ xj

d

with su�cient approximation exists, for some n ≥ 1 and where xj
i ∈ RNi for i =

1, 2, . . . , d and j = 1, 2, . . . , n. Moreover, we would to show that

lim
n→∞

‚

‚

‚

A−1f − un

‚

‚

‚

2
= 0,
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that is,

A−1f =
∞
X

j=1

xj
1 ⊗ · · · ⊗ xj

d.

Thus, in a �rst approach to solve it, we would to determine vectors xj
1, . . . ,xj

d for

j = 1, 2, . . . , n that minimizes

‚

‚

‚

‚

‚

‚

f − A

0

@

n
X

j=1

xj
1 ⊗ · · · ⊗ xj

d

1

A

‚

‚

‚

‚

‚

‚

2

,

or, in short

argminrank⊗u≤n‖f − Au‖2, (7)

by using the notation introduced in [4]. Note that this problem is closely related with

the multi-linear generalization of the best low rank approximation of high-order tensors

(see also [10], [11] and references therein).

For each n ∈ N, we de�ne the set

Sn = {x ∈ RN1···Nd : rank⊗x ≤ n},

introduced in [4], in the following way. Given x ∈ RN1···Nd we say that x ∈ S1 =

S1(N1, N2, . . . , Nd) if x = x1 ⊗ x2 ⊗ · · · ⊗ xd, where xi ∈ RNi , for i = 1, . . . , d. For

n ≥ 2 we de�ne inductively Sn = Sn(N1, N2, . . . , Nd) = Sn−1 + S1, that is,

Sn =

(

x : x =
k
X

i=1

x(i), x(i) ∈ S1 for 1 ≤ i ≤ k ≤ n

)

.

Note that Sn ⊂ Sn+1 for all n ≥ 1.

Unfortunately, from Proposition 4.1 (a) of [4], we have that the set Sn is not

necessarily (or even usually) closed for each n ≥ 2. However, from Proposition 4.2 of

[4] it follows that S1 is a closed set in any norm-topology. This fact implies, as we

will see below in Lemma 2, that given an invertible matrix A ∈ RN1N2···Nd×N1N2···Nd ,

then for every b ∈ RN1···Nd we have

argminx∈S1
‖b − Ax‖2 6= ∅. (8)

This allow to consider the following iterative scheme. Let u0 = y0 = 0, and for each

n ≥ 1 take

rn−1 = f − Aun−1, (9)

un = un−1 + yn where yn ∈ argminy∈S1
‖rn−1 − Ay‖2. (10)

Note that for each vector f ∈ RN1···Nd and each invertible matrix A ∈ RN1N2···Nd×N1N2···Nd ,

we can construct for each n, by using (9)-(10), a vector

un =

n
X

j=1

yn ∈ Sn \ Sn−1,
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here we assume that yj 6= 0 for 1 ≤ j ≤ n, that is, rank⊗ un = n. Since un ≈ A−1f ,

we de�ne the rank⊗ for A−1f obtained by the Greedy Rank-One Update Algorithm

(9)-(10) as

rankG
⊗ (A−1f) =



∞ if {j ≥ 1 : yj = 0} = ∅,
min{j ≥ 1 : yj = 0} − 1 otherwise.

The following theorem, which is the main result of this paper, gives the convergence of

the Greedy Rank-One Update Approximation for solving linear systems with full rank

matrix.

Theorem 1 Let f ∈ RN1N2···Nd and A ∈ RN1N2···Nd×N1N2···Nd , be an invertible

matrix. Then, by using the iterative scheme (9)-(10), we obtain that the sequence

{‖rn‖2}
rankG

⊗ (A−1f)

n=0 , is strictly decreasing and

A−1f = lim
n→∞

un =

rankG
⊗ (A−1f)
X

j=0

yj . (11)

Moreover, the rate of convergence is given by

‖rn‖2

‖r0‖2
=

n
Y

j=1

sin θj (12)

for 1 ≤ n ≤ rankG
⊗ (A−1f) where

θj = arccos

 

˙

rj−1, Ayj

¸

‖rj−1‖2‖Ayj‖2

!

∈ (0, π/2) (13)

for 1 ≤ j ≤ n.

We remark that Grasedyck [6] provides the existence and computation of a low Kro-

necker rank approximate for a linear system where the matrix A possesses a particular

tensor structure and f ∈ S1.

From (11) we obtain that if rankG
⊗ (A−1f) < ∞, then ‖rn‖2 = 0 for all n >

rankG
⊗ (A−1f). Thus, the above theorem allow to us to construct a procedure, that we

give in the pseudo-code form in Algorithm 1, under the assumption that we have a

numerical method in order to �nd a y solving (8) (see the step 5 in Algorithm 1) and

that we introduce below.

In order to prove Theorem 1 we need the following two lemmas. From Proposition

4.2 of [4] it follows the next result.

Lemma 1 S1 is a closed set in the ‖ · ‖2-topology of RN1···Nd.

The next lemma give us the existence (but not unicity) of a minimizer for the map

Φ(x) = ‖b − Ax‖2 de�ned from S1 to [0,∞).

Lemma 2 Assume that A invertible. Then there exists x∗ ∈ S1 such that

‖b − Ax∗‖2 = min
x∈S1

‖b − Ax‖2. (14)
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Algorithm 1 Greedy Rank-One Update

1: procedure GROU(f , A, ε, tol, rank_max)
2: r0 = f
3: u = 0
4: for i = 0, 1, 2, . . . , rank_max do

5: y = procedure (minrank⊗x≤1 ‖ri −Ay‖22)
6: ri+1 = ri −Ay
7: u← u + y
8: if ‖ri+1‖2 < ε or |‖ri+1‖2 − ‖ri‖2| < tol then goto 13
9: end if

10: end for

11: return u and ‖rrank_max‖2.
12: break

13: return u and ‖ri+1‖2
14: end procedure

Proof Let S = {‖b − Ax‖2 : x ∈ S1} ⊂ R. Since it is bounded below, there exists

γ = inf S = infx∈S1 ‖b − Ax‖2 ≥ 0. Moreover, for each y0 ∈ RN1···Nd such that

‖y0‖2 = γ, then x0 = A−1(b − y0) satisfy that

‖b − Ax0‖2 = γ = inf
x∈S1

‖b − Ax‖2.

Since γ is the in�mum of the set S, for each n > 0 there exists xn ∈ S1 such that

γ +
1

n
≥ ‖b − Axn‖2 ≥ γ. (15)

Now, let yn = b − Axn, then for all n > 0,

yn ∈ {y : (γ + 1) ≥ ‖y‖2 ≥ γ} ,

which is a compact set in the ‖ · ‖2-topology. Thus, there exists a subsequence {ynk}
such that ynk → y∗ as nk → ∞ in the ‖ · ‖2-topology. In consequence,

xnk = A−1(b − ynk) ∈ S1 −→ x∗ = A−1(b − y∗) ∈ S1.

as nk → ∞, because S1 is a closed set the ‖ · ‖2-topology. Finally, substituting in (15)

n by nk and taking limits as nk → ∞, we obtain that ‖b − Ax∗‖2 = γ and this ends

the proof of lemma. ut

Proof of Theorem 1

It is clear that if f = 0 the theorem follows by consider u0 = y0 = 0. Thus, from now

one we assume that f 6= 0.

Recall that u0 = y0 = 0, and

rn = f − Aun = rn−1 − Ayn,

for all n ≥ 0. By using Lemma 2, the residual at the n-th step rn satisfy

‖rn‖2 = ‖rn−1 − Ayn‖2 = min
y∈S1

‖rn−1 − Ay‖2 . (16)

Since, 0 ∈ S1 it follows that

‖rn‖2 ≤ ‖rn−1‖2 (17)
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for all n ≥ 1. From (17) we have that either there exists k ∈ Z+ such that

‖rk+1‖2 = ‖rk‖2 < ‖rj‖2 for j < k, (18)

that is, k = rankG
⊗ (A−1f) < ∞, or

‖rn+1‖2 < ‖rn‖2, (19)

for all n ≥ 0. The later condition implies that rankG
⊗ (A−1f) = ∞. In particular we

obtain that the sequence {rn}
rankG

⊗ (A−1f)

n=0 is strictly decreasing.

Assume that rankG
⊗ (A−1f) = k < ∞. Since if xi ∈ RNi for i = 1, 2, . . . , d, then

λx1 ⊗ x2 ⊗k · · · ⊗ xd ∈ S1 for all λ ∈ R. Consequently, we have

‖rk − A(λx1 ⊗ x2 ⊗k · · · ⊗ xd)‖2 ≥ ‖rk‖2 (20)

for every λ ∈ R. This implies that rk and A(x1 ⊗x2 ⊗k · · · ⊗xd) are orthogonal. Since

the vectors xi ∈ RNi for i = 1, 2, . . . , d, are arbitrary and A has full rank, this means

that rk = 0 and in consequence uk = A−1f and rj = 0 for all j ≥ k.

Let be

D = {w : w = Ay, ‖w‖2 = 1 and y ∈ S1} ,

then

min
y∈S1

‖b − Ax‖2 = min
w∈D,λ∈R

‖b − λw‖2

Note that

‖b − λw‖2
2 = ‖b‖2

2 − 2λ〈b,w〉 + λ2, (21)

then the minimum for ‖b − λw‖2
2 when w ∈ D is obtained for λ = 〈b,w〉 > 0 and

‖b − λw‖2
2 = ‖b‖2

2 − |〈b,w〉|2.

Thus,

min
y∈S1

‖b − Ay‖2
2 = min

λ∈R, w∈D
‖b − λw‖2

2 (22)

= min
w∈D

‖b − 〈b,w〉w‖2
2 (23)

= ‖b‖2
2 − max

w∈D
|〈b,w〉|2. (24)

By using (16) and (22)-(24) we have that for each 1 ≤ n ≤ rankG
⊗ (A−1f) there exists

wn ∈ D, such that

Ayn = 〈rn−1,wn〉wn. (25)

Thus,

‖Ayn‖2 = 〈rn−1,wn〉 > 0,

and

〈rn−1,wn〉 ≥ |〈rn−1,w〉|, (26)

for all w ∈ D.

From (22)-(24) and (25) we obtain

‖rn‖2
2 = ‖rn−1 − Ayn‖2

2 (27)

= ‖rn−1‖2
2 − |〈rn−1,wn〉|2 (28)

= ‖rn−1‖2
2

“

1 − ρ2
n

”

, (29)
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for all 1 ≤ n ≤ rankG
⊗ (A−1f) and where

ρn =
〈rn−1,wn〉
‖rn−1‖2

=
〈rn−1, Ayn〉

‖rn−1‖2‖Ayn‖2
= cos θn ∈ (0, 1).

Proceeding inductively from (27)-(29) follows (12).

From (28) we obtain that

‖rn‖2
2 = ‖f‖2

2 −
n
X

j=1

|〈rj−1,wj〉|2 (30)

for all 1 ≤ n ≤ rankG
⊗ (A−1f). Since the sequence {‖rn‖2}∞n=0 is decreasing and

bounded below, there exists

lim
n→∞

‖rn‖2
2 = R2 = ‖f‖2

2 − lim
n→∞

n
X

j=1

|〈rj−1,wj〉|2.

In consequence,

∞
X

j=1

|〈rj−1,wj〉|2 =

rankG
⊗ (A−1f)
X

j=1

|〈rj−1,wj〉|2

is a convergent series. Thus limn→∞ |〈rn−1,wn〉|2 = 0, and from (26) we have that

lim
n→∞

|〈rn−1,w〉|2 = 0 (31)

for all w ∈ D. Recall that if rankG
⊗ (A−1f) < ∞ then rj = 0 for all j ≥ rankG

⊗ (A−1f).

Thus, to end the proof of theorem we need to show that if rankG
⊗ (A−1f) = ∞, then

the sequence {rn}∞n=0 is convergent in RN1N2···Nd with the ‖ · ‖2-topology. Because if

it is true, let g = limn→∞ rn−1. From (31), we have 〈g,w〉 = 0 for all w ∈ D. Since

S1 contains a basis of RN1N2···Nd and A has full rank, then we obtain g = 0. Finally,

limn→∞ rn−1 = 0 and the theorem follows.

Thus, to conclude the proof we only need to show that the residuals sequence

{rn}∞n=0 is a Cauchy sequence. To prove it the following three lemmas will be useful.

Lemma 3 For each m, n ≥ 1,

|〈rn−1, Aym〉| ≤ 〈rn−1,wn〉〈rm−1,wm〉

Proof Since

|〈rn−1, Aym〉| = |〈rn−1, 〈rm−1wm〉wm〉| = |〈rn−1,wm〉|〈rm−1wm〉 ≤ 〈rn−1,wn〉〈rm−1wm〉,

the lemma follows. ut

Lemma 4 For every ε > 0 and N ∈ N, there exists τ ≥ N such that

〈rτ−1,wτ 〉
τ
X

k=1

〈rk−1,wk〉 ≤ ε. (32)
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Proof Since
P∞

j=1〈rk−1,wk〉2 < ∞, for a given ε > 0 and N ∈ N we choose n ≥ N

such that
P∞

j=n+1〈rk−1,wk〉2 ≤ ε/2. Since limk→∞〈rk−1,wk〉 = 0, we can construct

a map τ : N −→ N, de�ned inductively by τ(1) = 1 and

τ(k + 1) = min
m≥τ(k)

n

〈rm−1,wm〉 ≤ 〈rτ(k)−1,wτ(k)〉
o

for all k ≥ 1, such that τ is strictly increasing and limk→∞ τ(k) = ∞. Observe that

for all k ≥ 1 and j satisfying that τ(k) < j < τ(k + 1) it follows

〈rτ(k+1)−1,wτ(k+1)〉 ≤ 〈rτ(k)−1,wτ(k)〉 ≤ 〈rj−1,wj〉.

Thus

〈rτ(k+1)−1,wτ(k+1)〉 ≤ 〈rj−1,wj〉,
for all 1 ≤ j < τ(k + 1). Now, we can choose τ = τ(k + 1) > n large enough, satisfying

that

〈rτ−1,wτ 〉
n
X

k=1

〈rk−1,wk〉 ≤ ε/2,

because limk→∞〈rτ(k)−1,wτ(k)〉 = 0. Then

〈rτ−1,wτ 〉
τ
X

k=1

〈rk−1,wk〉 = 〈rτ−1,wτ 〉
n
X

k=1

〈rk−1,wk〉 + 〈rτ−1,wτ 〉
τ
X

k=n+1

〈rk−1,wk〉

≤ ε/2 +

τ
X

k=n+1

〈rτ−1,wτ 〉〈rk−1,wk〉

≤ ε/2 +

τ
X

k=n+1

〈rk−1,wk〉2

≤ ε/2 +

∞
X

k=n+1

〈rk−1,wk〉2 ≤ ε.

This proves the lemma. ut

Lemma 5 For each M > N > 0 it follows that

‖rN−1 − rM−1‖2
2 ≤ ‖rN−1‖2

2 − ‖rM−1‖2
2 + 〈rM−1,wM 〉

M
X

k=1

〈rk−1,wk〉.

Proof Since rN−1 = rM−1 +
PM−1

k=N Ayk we have

‖rN−1 − rM−1‖2
2 = ‖rN−1‖2

2 + ‖rM−1‖2
2 − 2

*

rM−1 +

M−1
X

k=N

Ayk, rM−1

+

= ‖rN−1‖2
2 − ‖rM−1‖2

2 − 2

M−1
X

k=N

〈Ayk, rM−1〉

≤ ‖rN−1‖2
2 − ‖rM−1‖2

2 + 2

M−1
X

k=N

〈rM−1,wM 〉〈rk−1,wk〉 by Lemma 3,

≤ ‖rN−1‖2
2 − ‖rM−1‖2

2 + 2

M
X

k=1

〈rM−1,wM 〉〈rk−1,wk〉 by adding positive terms.
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This ends the proof of the lemma. ut

Since limn→∞ ‖rn‖2
2 = R2, and it is a decreasing sequence, for a given ε > 0 there

exists kε > 0 such that

R2 ≤ ‖rm−1‖2
2 ≤ R2 + ε2/8

for all m ≥ kε. Assume that m > kε. From Lemma 4, for each m + p there exists

τ > m + p such that

〈rτ−1,wτ 〉
τ
X

k=1

〈rk−1,wk〉 ≤ ε2/8.

Now, we would to estimate

‖rm−1 − rm+p−1‖2 ≤ ‖rm−1 − rτ−1‖2 + ‖rτ−1 − rm+p−1‖2.

By using Lemma 5 with M = τ and N = m and m + p, respectively, we obtain that

‖rm−1 − rτ−1‖2
2 ≤ R2 + ε2/8 − R2 + ε2/8 = ε2/4,

and

‖rm+p−1 − rτ−1‖2
2 ≤ R2 + ε2/8 − R2 + ε2/8 = ε2/4,

respectively. In consequence {rn}∞n=0 is a Cauchy sequence and it converges to 0. ut

3 A Block Coordinated Descent Approach for the Rank-One Minimization

Problem

In this section we study the Rank-One minimization problem

min
x∈S1

‖b − Ax‖2 , (33)

that we can write as the following unconstrained optimization problem:

min
(x1,··· ,xd)∈RN1+···+Nd

‖b − A (x1 ⊗ · · · ⊗ xd)‖2 . (34)

A popular method for minimizing a real-valued continuously di�erentiable function Φ

of N1 + · · · + Nd real variables, subject to bound constrains, is the (block) coordinate

descend method. In this method, the coordinates are partitioned into Nk blocks and,

at each iteration, b is minimized with respect to one of the coordinate blocks while

the others are held �xed (see Algorithm 2). These cyclic methods have the advantage

of not requiring any information about the gradient to determine the descent direc-

tions. However, their convergence properties are poorer than steepest descend methods.

Moreover, its are attractive because of their easy implementation in some particular

cases as we will see below.

The main result of this section is the following.
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Algorithm 2 A Block Coordinated Descent Algorithm

1: Given Φ : RN1+···+Nd → R
2: Initialize x0

i ∈ RNi for i = 1, 2 . . . , d.
3: for n = 1, 2, . . . do
4: for k = 1, 2, . . . , d do

5: xn
k ∈ arg min

xk∈RNk Φ(xn
1 , . . . ,xn

k−1,xk,xn−1
k+1 , . . . ,xn−1

d )

6: end for

7: end for

Theorem 2 Let b ∈ RN1N2···Nd and A ∈ RN1N2···Nd×N1N2···Nd , be an invertible

matrix. Assume that for each k ∈ {1, 2, . . . , d} the (N1 · · ·Nd) × Nk-matrix

Zk = A (x1 ⊗ · · · ⊗ xk−1 ⊗ INk
⊗ xk+1 · · · ⊗ xd)

has linearly independent columns for every (x1, . . . ,xd) ∈ RN1+···+Nd satisfying

‖b − A (x1 ⊗ · · · ⊗ xd)‖2 ≤
‚

‚

‚

b − A
“

x0
1 ⊗ · · · ⊗ x0

d

”

‚

‚

‚

2
. (35)

Then every accumulation point (x∗
1, . . . ,x∗

d) of the sequence

˘`

xn
1 , . . . ,xn

d

´¯∞
n=0

,

generated by Algorithm 2 using the map

Φ (x1, . . . ,xd) = ‖b − A(x1 ⊗ · · · ⊗ xd)‖2,

satis�es the equation ∇Φ (x∗
1, . . . ,x∗

d) = 0. Moreover, assume that x1, . . . ,xk−1,xk+1, . . . ,xd,

are �xed for some k ∈ {1, 2, . . . , d}, then

xk = (ZT
k Zk)−1ZT

k b,

is the global minimum of the directional minimization problem

min
x∈RNk

‖b − A (x1 ⊗ · · · ⊗ xk−1 ⊗ x ⊗ xk+1 ⊗ · · · ⊗ xd)‖2 . (36)

Proof To prove the theorem we will use the following lemma, that it can be proved by

using the same argument as the proof of Theorem 5.32 in [13].

Lemma 6 Assume that the function Φ : RN1+···+Nd → R is continuously di�erentiable

and that the set

X1 =
n

(x1, . . . ,xd) ∈ RN1+···+Nd : Φ(x1, . . . ,xd) ≤ Φ(x0
1, . . . ,x0

d)
o

is bounded. Moreover, assume that for every (x1, . . . ,xd) ∈ X1 the directional mini-

mization problem

min
xk∈RNk

Φ(x1, . . . ,xk−1,xk,xk+1, . . . ,xd)

has a unique solution for each k = 1, 2, . . . , d. Then every accumulation point (x∗
1, . . . ,x∗

d)

of the sequence
˘`

xn
1 , . . . ,xn

d

´¯∞
n=0

,

generated by Algorithm 2 satis�es the equation ∇Φ(x∗
1, . . . ,x∗

d) = 0.
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Since

x1 ⊗ · · · ⊗ xk−1 ⊗ x ⊗ xk+1 · · · ⊗ xd

= (x1 ⊗ · · · ⊗ xk−1 ⊗ Ik ⊗ xk+1 · · · ⊗ xd) (1 ⊗ · · · ⊗ 1 ⊗ x ⊗ 1 · · · ⊗ 1)

= (x1 ⊗ · · · ⊗ xk−1 ⊗ Ik ⊗ xk+1 · · · ⊗ xd)x,

we can write

‖b − A (x1 ⊗ · · · ⊗ xd)‖2 = ‖b − Zkxk‖2 . (37)

Then, for a �xed x1, . . . ,xk−1,xk+1, . . . ,xd the directional minimization problem (36)

is equivalent to the standard Least Squares problem

min
x∈RNk

‖b − Zkx‖2 . (38)

Since if Zk has linearly independent columns then (38) has a unique solution

xk = (ZT
k Zk)−1ZT

k b,

from Lemma 6, the theorem follows. ut

Note that given a point (x1, . . . ,xd), descend with respect to the coordinate xk

means, from Theorem 2, that we need to solve the standard least squares problem (38).

In particular we minimize Φ cyclically with respect to the coordinate variables Thus,

Theorem 2 allow to us to solve the rank-one minimization problem (33) by means the

Alternate Least Squares (ALS) Algorithm 3. We point out that for high-dimensional

problems the numerical implementation of solving the equation

ZT
k Zkx = ZT

k x, (39)

can be a hardly task. However, if the matrix A can be represented also in separated

representation form, then as the following corollary shows (39) can be implemented in

a more easy way by using the properties of the Kronecker product.

Algorithm 3 ALS Algorithm

1: procedure ALS(b, A, iter_max, tol)
2: Initialize x0

i for i = 1, 2 . . . , d.
3: iter = 1
4: while iter < iter_max do

5: x̂k ← x0
k, k = 1, . . . , d

6: for k = 1, 2, . . . , d do

7: Z = A(x0
1 ⊗ · · · ⊗ x0

k−1 ⊗ INk
⊗ x̂k+1 ⊗ · · · ⊗ x̂d)

8: x0
k = (ZT Z)−1ZT b

9: end for

10: if
Qd

k=1 ‖x0
k − x̂k‖2 < tol then goto 14

11: end if

12: iter = iter + 1
13: end while

14: return x0 = (x0
1, . . . ,x0

d)
15: end procedure
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Corollary 1 Assume that

A =

rA
X

j=1

Aj
1 ⊗ · · · ⊗ Aj

d,

where Aj
i ∈ RNi×Ni for i = 1, 2, . . . , d and j = 1, 2, . . . , rA. Let k ∈ {1, 2, . . . , d} and

assume that for x1, . . . ,xk−1,xk+1, . . . ,xd �xed, the (N1 · · ·Nd) × Nk-matrix

Zk =

rA
X

j=1

A
(j)
1 x1 ⊗ · · · ⊗ A

(j)
k−1xk−1 ⊗ A

(j)
k ⊗ A

(j)
k+1xk+1. · · · ⊗ A

(j)
d xd,

has linearly independent columns. Then

x∗
k = (ZT

k Zk)−1ZT
k b. (40)

is the global minimum of of the directional minimization problem (36).

This corollary implies that we can solve the minimization problem

min
(x1,...,xd)

‚

‚

‚

‚

‚

b −
rA
X

i=1

Ai
1x1 ⊗ · · · ⊗ Ai

dxd

‚

‚

‚

‚

‚

2

, (41)

by means the ALS Algorithm 4.

Algorithm 4 ALS with A is separable form

1: procedure ALS(b,
PrA

i=1 Ai
1 ⊗ · · · ⊗Ai

d, iter_max, tol)

2: Initialize x0
i for i = 1, 2 . . . , d.

3: iter = 1
4: while iter < iter_max do

5: x̂k ← x0
k, k = 1, . . . , d

6: for k = 1, 2, . . . , d do

7: Z =
PrA

j=1 A
(j)
1 x0

1 ⊗ · · · ⊗A
(j)
k−1x

0
k−1 ⊗A

(j)
k ⊗A

(j)
k+1x̂k+1 · · · ⊗A

(j)
d x̂d

8: x0
k = (ZT Z)−1ZT b

9: end for

10: if
Qd

k=1 ‖x0
k − x̂k‖2 < tol then goto 14

11: end if

12: iter = iter + 1
13: end while

14: return x0 = (x0
1, . . . ,x0

d)
15: end procedure

4 Numerical examples

In order to illustrate the Greedy Rank-One Update Algorithm 1 by using the Alternate

Least Squares Algorithms 3 and 4 we give the following examples. First, we compute

for a given vector f ∈ R143
its approximation by a vector

Pn
j=1 f1

j ⊗ f2
j ⊗ f3

j . To this

end we consider

A = I ⊗ I ⊗ I



15

where I is the identity matrix of size 14×14. We take as a choice of f a random vector.

Then for the parameter values iter_max = 10, rank_max = 1000 tol = 2.22e−16, and

ε = 1.0e − 08, we compute the sequences {θj}n
j=1, given by (13), and {‖rj‖2}n

j=0 As

can be seen in Figure 1, the �rst one is an oscillating sequence around approximately

1.39, and, as Theorem 1 shows, the norm residuals is strictly decreasing. The algorithm

stopped at n = 1000 after 8.9 seconds with a relative error equal to 2.86238020895006e−
08.
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1.39

1.4

1.41

1.42

0 200 400 600 800 1000

θ
j

rank

θn
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-1

0

1

0 200 400 600 800 1000

lo
g

1
0

(r
e

s
id

u
a

l)

rank

Fig. 1 The sequences {θj}1000j=1 , and {log10 ‖rj‖2}1000j=0 when A is the identity matrix.

Now, in our second example we would to study the relationship between the se-

quence of angles {θj}n
j=1 ⊂ (0, π/2), given in the statement of Theorem1, and the

sequence of the norm of the residuals {‖rj‖2}n
j=1. Here n is the rankG

⊗ bu where bu is

a numerical approximation of A−1f . Motivated by the above example we consider the

mean angle, denoted by

θn =
1

n

n
X

j=1

θj ,
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of a �nite sequence {θj}n
j=1. Now, we perform the following numerical experiment. We

�x the values N1 = 3, N2 = 4, tol = 2.22e − 16, ε = 1.0e − 08, iter_max = 10 and

rank_max = 1000. We repeat the following procedure 500-times. First, we generated

randomly a matrix A ∈ RN1N2×N1N2 , and a solution A−1f , in order to construct

the right-side hand f of the linear system. Finally, we run Algorithm 1 to obtain an

approximate solution bu with rankG
⊗ bu and a mean angle θrankG

⊗ bu.

In Figure 2 we can see a sample obtained in this experiment, for this particular

case the approximate solution bu had rankG
⊗ bu = 62, with a relative error equal to

9.47228661927500e − 08. Moreover, the the matrix A was nearly singular with a con-

dition number equal to 488. Note, that the angle sequence, as we can see in Figure 2,

oscillates around θrankG
⊗ bu = 0.949051119522545.

In Figure 3 we plot the mean angle as a function of the rankG
⊗ of the approximate

solution. From this picture we can deduce that some weakly linear dependence exists.
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Fig. 2 The sequences {θj}62j=1, and {log10 ‖rj‖2}62j=0 when we take as a choice of A a 20× 20

random matrix.
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Fig. 3 The mean angle θrankG
⊗ bu as a function of rankG

⊗ bu. The discontinuous line is the least

squares straight line y = (7.69351915752358e− 05)x + 1.36946939179450.

4.1 A model problem: The Poisson equation in (0, 1)d

In this section we present the following example. Recall that the Poisson problem reads



−∆u = f in Ω ⊂ Rd

u|∂Ω = 0.
(42)

where f = f(x1, x2, . . . , xd) is a given function and ∆ =
Pd

i=1
∂2

∂x2
i
is the Laplace

operator. In order to �nd its variational formulation, we recall the following Green

formula for the Laplacian:

−
Z

Ω
∆u v dx =

Z

Ω
∇u · ∇v dx −

Z

∂Ω

∂u

∂n
v dγ. (43)

Assume that Ω = (0, 1)d. and for d = 1, 2, . . . let be the bilinear form

ad(u; v) =

Z

Ω
∇u · ∇v dx.

Take d = 3 in (42) and then we can easily deduce that u satis�es the following problem:

Find u ∈ H1
0 (Ω) such that

a3(u; v) =

Z

Ω
f vdx for all v ∈ H1

0 (Ω). (44)
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The Galerkin approximation to (44) reads:

�nd uh ∈ Vh : a3(uh; vh) =

Z

Ω
f vhdx ∀vh ∈ Vh. (45)

Assume Vh = P ⊗P ⊗P where P = span{ω1, . . . , ωN} and ω1, . . . , ωN in H1
0 (0, 1)

are the following N�linearly independent maps. First, we partitioned the interval [0, 1]

into N -parts

0 = bx1 < bx2 < . . . < bxN+1 = 1.

Denote hi = bxi+1 − bxi and h = max1≤i≤N hi. For i = 1, 2, . . . , N − 1, let

ω(i)(x) =

8

<

:

(x − bxi)/hi bxi ≤ x ≤ bxi+1

(bxi+2 − x)/hi+1 bxi+1 ≤ x ≤ bxi+2,

0 otherwise

These functions are continuous and piecewise linear. It is easy to see that they are lin-

early independent. The �rst order weak derivatives of the basis functions are piecewise

constant. Indeed for i = 1, 2, . . . , N − 1

d

dx
ω(i)(x) =

8

<

:

1/hi bxi ≤ x ≤ bxi+1

−1/hi+1 bxi+1 ≤ x ≤ bxi+2,

0 otherwise

We assume that we have an uniform partition, that is, hi = h for i = 1, 2, . . . , N. Then

the following formulas are useful

Z 1

0

d

dx
ω(i)(x)

d

dx
ω(i−1)(x)dx = − 1

h
for 2 ≤ i ≤ N − 1, (46)

Z 1

0

„

d

dx
ω(i)(x)

«2

dx =
2

h
, for 1 ≤ i ≤ N − 1, (47)

Z 1

0
ω(i)(x) ω(i−1)(x)dx =

h

6
for 2 ≤ i ≤ N − 1, (48)

Z 1

0

“

ω(i)(x)
”2

dx =
2h

3
, for 1 ≤ i ≤ N − 1, (49)

Now, let the sti�ness multilinear matrix A3 de�ned by

(A3)j1,j2,j3;i1,i2,i3 = a3(ω
(i1) ⊗ ω(i2) ⊗ ω(i3); ω(j1) ⊗ ω(j2) ⊗ ω(j3))

=

Z

Ω

 

∂ω(i1)

∂x1

∂ω(j1)

∂x1
ω(i2)ω(j2)ω(i3)ω(j3)

+
∂ω(i2)

∂x2

∂ω(j2)

∂x2
ω(i1)ω(j1)ω(i3)ω(j3)

∂ω(i3)

∂x2

∂ω(j3)

∂x2
ω(i1)ω(j1)ω(i2)ω(j2)

!

dx

= Aj1;i1Bj2;i2Bj3;i3 + Bj1;i1Aj2;i2Bj1;i1 + Bj1;i1Bj2;i2Aj3;i3 ,
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where

Aj,i = a1(ω
(i); ω(j)) and Bj;i =

Z 1

0
ω(i)(x)ω(j)(x)dx.

Then, by using (46)-(49), we have that

A =

2

6

6

6

6

6

6

4

2
h − 1

h
− 1

h
2
h − 1

h
. . .

. . .
. . .

− 1
h

2
h − 1

h
− 1

h
2
h

3

7

7

7

7

7

7

5

and B =

2

6

6

6

6

6

6

4

2h
3

h
6

h
6

2h
3

h
6

. . .
. . .

. . .
h
6

2h
3

h
6

h
6

2h
3

3

7

7

7

7

7

7

5

.

Finally, by using (2), we obtain that

(A3)j1,j2,j3;i1,i2,i3 = (A ⊗ B ⊗ B + B ⊗ A ⊗ B + B ⊗ B ⊗ A)s,t.

On the other hand we have that
Z

Ω
f (ω(j1) ⊗ ω(j2) ⊗ ω(j3))dx = Fj1,j2,j3 .

In order to solve (45) we consider a map in Vh given by

uh =
X

i1,i2,i3

Ui1,i2,i3 ω(i1) ⊗ ω(i2) ⊗ ω(j3),

where Ui1,i2,i3 ≈ u(bxi1+1, bxi2+1, bxi3+1). Thus,

Uk,i2,i3 = Ui1,k,i3 = Ui1,i2,k = 0

for k ∈ {0, N}. Substitute uh in (45) with vh = ω(j1) ⊗ ω(j2) ⊗ ω(j3). Then we obtain

that
N−1
X

i1,i2,i3=1

(A3)j1,j2,j3;i1,i2.i3Ui1,i2,i3 = Fj1,j2,j3 (50)

must be hold for all j1, j2, j3 ∈ {1, . . . , N − 1}. This implies that (45) is equivalent to

solve the following linear system

(A ⊗ B ⊗ B + B ⊗ A ⊗ B + B ⊗ B ⊗ A)u = f , (51)

here we consider that a general multi-index tensor can be represented by a standard

vector by using that

Vj1,j2,...,jd
= vs

if and only if

s = jd +

d−1
X

l=1

2

4(jl − 1)

d
Y

l′=l+1

N ′
l′

3

5 .

For a general d ≥ 2 it can be shown that in order to solve numerically (42) we need

to solve the following linear system:

0

@

d
X

j=1

A
(j)
1 ⊗ · · · ⊗ A

(j)
d

1

Au = f . (52)
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where

A
(j)
k =



A if k = j,

B if k 6= j.

Finally, it is not di�cult to show that A and B are symmetric and de�nite positive

matrices. Then, from the properties 7-8 listed at the end of Section 1,
Pd

j=1 A
(j)
1 ⊗

· · · ⊗ A
(j)
d is a symmetric and de�nite positive matrix. In consequence, it is invertible.

Some numerical examples

Example 1 Firstly, we consider the following problem in 3D: Solve for

(x1, x2, x3) ∈ Ω = (0, 1)3 :

−∆u = (2π)2 · 3 · sin(2πx1 − π) sin(2πx2 − π) sin(2πx3 − π), (53)

u|∂Ω = 0, (54)

which has as closed form solution

u(x1, x2, x3) = sin(2πx1 − π) sin(2πx2 − π) sin(2πx3 − π).

We used the separable representation algorithm given in Section 2 with parameter

values iter_max = 5, rank_max = 1000 and ε = 0.001. The algorithm give us an ap-

proximated solution u1 ∈ S1. In Figure 4 we represent the relative error of the solution

computed using the separable representation algorithm, using logarithmic scale, as a

function of the number of nodes used in the discretization of the Poisson equation.

All the computations were performed using the GNU software Octave in a AMD 64

Athlon K8 with 2Gib of RAM.

In Figure 5 we represent the CPU time, in logarithmic scale, used in solving the

linear system (52) against the separable representation algorithm. In both cases all the

linear systems involved were solved using the standard linear system solver (A\b) of
Octave.

Example 2 Finally we are addressing some highly multidimensional models. To this

end we solve numerically (42) for (x1, . . . , xd) ∈ Ω = (0, π)d where

f =
d
X

k=1

−(1 + k) sin(−1+k)(xk)
“

−k cos2(xk) + sin2(xk)
”

d
Y

k′=1,k′ 6=k

sin(1+k′)(xk′),

which has as closed form solution

u(x1, . . . , xd) =

d
Y

k=1

sin(k+1)(xk).

Here we consider the true solution u given by Ui1,...,id
= u(bxi1+1, . . . , bxid+1). For

d = 10 we use the parameter values iter_max = 2, rank_max = 10 and ε = 0.001.

In a similar way as above the algorithm give us an approximated solution bu ∈ S1.

In Figure 6 we represent the absolute error ‖bu − u‖2 as a function of h = π/N for

N = 5, 10, 20, . . . , 160 in log10-scale. By using similar parameters values the problem

has been solved for d = 100 in about 20 minutes.
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Fig. 4 The relative error ‖u1 −A−1f‖2/‖A−1f‖2 in logarithmic scale.

5 Concluding Remarks

In this paper we prove the convergence of the Greedy Rank-One Update Algorithm

for solving linear systems with a full rank matrix. Moreover, we study the Rank-One

Minimization Problem and show that a Block Cyclic Coordinate Descend strategy

implies an Alternating Least Squares Algorithm. As we can show the method runs

under very weak conditions, recall that we only use the assumption that the linear

system has a an invertible matrix. However, its e�ciency depends strongly on the

matrix form (symmetric, tridiagonal, full, sparse, ...).
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