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Abstract In this paper we study the convergence of the well-known Greedy Rank-
One Update Algorithm. It is used to construct the rank-one series solution for full-
rank linear systems. The existence of the rank one approximations is also not new,
but surprisingly the focus there has been more on the applications side more that
in the convergence analysis. Our main contribution is to prove the convergence of
the algorithm and also we study the required rank one approximation in each step.
We also give some numerical examples and describe its relationship with the Finite
Element Method for High-Dimensional Partial Differential Equations based on the
tensorial product of one-dimensional bases. We illustrate this situation taking as a
model problem the multidimensional Poisson equation with homogeneous Dirichlet
boundary condition.
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1 Introduction

In [1] and [2], some of the authors of the present paper propose the use of a sepa-
rated representation, which allows to define a tensor product approximation basis as
well as to decouple the numerical integration of a high dimensional model in each di-
mension. The milestone of this methodology is the use of shape functions given by
a tensorial based construction. This fact has advantages as the manipulation of only
one dimensional polynomials and its derivatives, that provides a better computational
performance and simplified implementation and use one-dimensional integration rules.
Moreover, it makes possible the solution of models defined in spaces of more than hun-
dred dimensions in some specific applications. This problem is closely related with the
decomposition of a tensor as a sum of rank-one tensors, that it can be considered as a
higher order extension of the matrix Singular Value Decomposition.

The purpose of this work is to formalize and analyze the above strategy in the
framework of methods for solving linear systems by means tensor decompositions. As
we will show the approximation given in [1] and [2], is closely related with the best
low-rank approximation problem for high order tensors (see [4]). Unfortunately, in
[4] it has been proved that tensors of order 3 or higher can fail to have best rank-r
approximation for r > 2. Our strategy, with the perspective of [4] in mind, is to use
the fact that tensors of order 3 or higher have best rank-1 approximation.

In this context, we propose the use of a Greedy Rank-One Update Algorithm to
construct, for a full rank linear system, a rank-r approximate solution. This approach
is based in the so-called by the signal processing community as the Matching Pursuit
Algorithm of Mallat and Zhang [12], also known as Projection Pursuit by the statistics
community (see Friedman and Stuezle [7] and Huber [8]) or as a Pure Greedy Algorithm
(see the recent survey of Temlyakov [14]) in the approximation theory community. Our
main contribution, stated in Theorem 1, is to prove the convergence of this Greedy
rank-one update algorithm. and characterize the speed of convergence in terms of a
sequence of angles. This strategy depends strongly on the computation of the best
rank-1 approximation of the residual obtained at each step of the proposed algorithm.
To solve this we will propose the use of a Block Coordinate Descend Method, because
it has global convergence. In particular, we will show that for the class of invertible
matrices, this problem collapses, for each selected direction, to an ordinary least-squares
problem. We remark that this strategy appears to be identical to so-called Alternating
Least Squares (ALS) method proposed in [3] for the class of separable matrices (see
statement of Corollary 1 below).

In [9] an orthogonal Greedy tensor decomposition has been used in order to compute
a rank-r approximation. However, as the author points out, the computational difficulty
of this approach arises in enforcing the constrains of the rank-one approximation needed
at each step of the proposed algorithm. Zhang and Golub [16], also explores various
computational techniques when the tensor has a completely orthogonal decomposition,
in which case the problem is more simpler. All these methods use an ALS Approach for
computing the rank-one approach. On the other hand, the approach following in this
paper differs from the [11] based in the associated Lagrange Equations to the minimum
least-squares cost function.

This paper is organized as follows. In the next section we introduce the notation
used in this paper and give our main result, the convergence of the Greedy Rank-One
Update Algorithm for solving full rank linear systems. In Section 3 we study the rank-
one approach, in particular we prove that a Block Cyclic Coordinate Descend strategy



implies an ALS Algorithm. Section 4.1 is dedicated to give some numerical examples
of the above algorithms and describe its relationship with the Finite Element Method
for High-Dimensional Partial Differential Equations based on the tensorial product
of one-dimensional bases. We illustrate this situation taking as a model problem the
multidimensional Poisson equation with homogeneous Dirichlet boundary condition.
We conclude with some comments and remarks.

2 Definitions and Statement of Main Result

First at all we introduce some notation. We denote by R M, the set of N x M-matrices
and by AT the transpose of a given matrix A. As usual we use

T T
(xy)=x y=y x

to denote the Euclidean inner product in R, and its corresponding 2-norm, by |||z =
(x, x)1/2. Let Iy be the N x N-identity matrix and when the dimension is clear from
the context, we simply denote it by I. Given a sequence {u;}52, C RY, we say that a

(e%S)
u = E llj
Jj=0

vector u € R can be written as

if and only if
n
nli)moo Z u; =u
j=0

in the ||-||2-topology. Now, we recall the definition and some properties of the Kronecker
product. The Kronecker product of A € RV XN and B € RV2*N2 | written A ® B, is
the tensor algebraic operation defined as

A17lB ALQB AI,N{B

Ao1B AgoB - Ay /B .
Agp=| T TEET RN g

ANl,lB ANl,QB ANth/B
Also, it can be defined by
(A ® B)(j; —1)Nj+ja; (i1 —1) Natia = Ajusiz Biasia- 1)

RN XN

Assume that A; € i for 1 <1 < d. Proceeding inductively we show that

(A1 ®- ®@Ag)st = (A1)jy iy - (Ad)jusig
if and only if s and ¢ satisfy
d—1 d d—1 d
s=ja+> |G- [ M| andt=ig+> |G- J] M| @
=1 I=i+1 =1 V=l41

Finally, we list some of the well-know properties of the Kronecker product (see for
example [5] or [15]).



AR (BRC)=(A®B)®C.

. (A+B)@(C+D)=(A®C)+(B®C)+ (A® D)+ (B® D).
AB®CD = (A®C)(B® D).

(A9 B l=4a"lgB L

(Ae B)T = AT @ BT.

If A and B are banded, then A ® B is banded.

. If A and B are symmetric, then A ® B is symmetric.

. If A and B are definite positive, then A ® B is definite positive.

© N> oA W

The concept of separated representation was introduced by Beylkin and Mohlenkamp
in [3] and it is related with the problem of constructing the approximate solutions of
some classes of problems in high-dimensional spaces by means a separable function. In
particular, for a given map

w:[0,1]" cR? — R,

we say that it has a separable representation if
e . .
u(xl,...,a:d):Zugj)(azl)---u&j)(xd) (3)
j=1

Now, consider a mesh of [0, 1] in the xg-variable given by Ny-mesh points, 1 < k < d,
then we can write a discrete version of (3) by

s . .
w(iysewiy) = Y u (@) uf (@), (4)
j=1

where 1 < i, < Ni for 1 < k < d. Observe that for each 1 < k < d, if xf; e RNx

denotes the vector with components u,(cj)(xik) for 1 < ip < Ny, then (4) it is equivalent
to

o
usz{@-"@)xé. (5)
j=1

We point out that (5) is an useful expression to implemented numerical algorithms
using the MATLAB and OCTAVE function kron.

Suppose that for given a linear Partial Differential Equation, and after a discretiza-
tion by means Finite Elements, we need to solve the linear system

Au =f, (6)

where Aisa (Ny -+ Ng)x(Ny - -+ Ng)-dimensional invertible matrix, for some Ny,..., Ny €
N. Then from all said above a low rank approximation

n
Ailf%un :ZXJ1®"'®X}71
j=1
with sufficient approximation exists, for some n > 1 and where x{ e RN for i =
1,2,...,dand j = 1,2,...,n. Moreover, we would to show that

lim ‘A‘lf — unH2 —0,

n—oo



that is,
e . .
AT =Y"x{@ - ex
j=1
Thus, in a first approach to solve it, we would to determine vectors x7,...,x7, for
7 =1,2,...,n that minimizes

n
f— A ij®~~~®xfi ,
j=1 2

or, in short
a‘rgnlinrank@u§n Hf - AUHQ’ (7)

by using the notation introduced in [4]. Note that this problem is closely related with
the multi-linear generalization of the best low rank approximation of high-order tensors
(see also [10], [11] and references therein).

For each n € N, we define the set

Sn={x¢€ RN N rankgx < n},
introduced in [4], in the following way. Given x € RN Nd e say that x € S =
S1(N1,Na,...,Ng) if x = x1 ® X2 ® -+ ® Xg4, where x; € RYN: for i = 1,...,d. For
n > 2 we define inductively Sp = Sp(N1, Na, ..., Ng) = Sp—1 + S1, that is,

k
Sn—{XZX—ZX(Z)7X(Z)€Sl for1<i<k<n}.
=1

Note that Sn C Sp41 for all n > 1.

Unfortunately, from Proposition 4.1 (a) of [4], we have that the set S, is not
necessarily (or even usually) closed for each n > 2. However, from Proposition 4.2 of
[4] it follows that Sp is a closed set in any norm-topology. This fact implies, as we
will see below in Lemma 2, that given an invertible matrix A € RN1N2w - Nax NiNo---Na,

then for every b € RN Nd we have
argminycs, [[b — Ax||2 # 0. (8)

This allow to consider the following iterative scheme. Let up = yg = 0, and for each
n > 1 take

rn—1 =f—Au,_1, (9)

Un

U,_1 + yn where y, € argming ¢ g, lrrn—1 — Ay|l2. (10)

Note that for each vector £ € RN "Ne and each invertible matrix A € RN1N2--NaxM N"’"'Nd,

we can construct for each n, by using (9)-(10), a vector

n
un = Zyn € Sn \Sn—h
j=1



here we assume that y; # 0 for 1 < j < n, that is, rankg up = n. Since up ~ A_lf,
we define the rankg for A~'f obtained by the Greedy Rank-One Update Algorithm
(9)-(10) as

G a—1 00 if {j>1:y;=0}=0,
k A f) = J
rankg ( ) {min{j >1:y; =0} -1 otherwise.
The following theorem, which is the main result of this paper, gives the convergence of
the Greedy Rank-One Update Approximation for solving linear systems with full rank
matrix.

Theorem 1 Let £ € RNVt N2"Na gng A ¢ RNlNz"'NdXNlNz'"Nd, be an invertible

matric. Then, by using the iterative scheme (9)-(10), we obtain that the sequence
rankg (A7)

{llrnll2},,—o , 18 strictly decreasing and
rankg (A7F)
-1 .
AT = lim u, = >y (11)

n—oo

Jj=0

Moreover, the rate of convergence is given by

Iallz _ 77
= 0 12
frolly ~ 1L (2

for1<n< rankg (A7F) where

0; = arccos (M> € (0,7/2) (13)

[rj—1ll2/lAy;ll2
for1 <5 <n.

We remark that Grasedyck [6] provides the existence and computation of a low Kro-
necker rank approximate for a linear system where the matrix A possesses a particular
tensor structure and f € S;.

From (11) we obtain that if rankg (A7) < oo, then [[rnll2 = O for all n >
rankg (A7Lf). Thus, the above theorem allow to us to construct a procedure, that we
give in the pseudo-code form in Algorithm 1, under the assumption that we have a
numerical method in order to find a y solving (8) (see the step 5 in Algorithm 1) and
that we introduce below.

In order to prove Theorem 1 we need the following two lemmas. From Proposition
4.2 of [4] it follows the next result.

Lemma 1 Sy is a closed set in the || - ||2-topology of RV1 - Na-

The next lemma give us the existence (but not unicity) of a minimizer for the map
&(x) = ||b — Ax||2 defined from S; to [0, 00).

Lemma 2 Assume that A invertible. Then there ezists x* € S1 such that

Ib — Ax*||> = min [|b — Ax]5. (14)
x€ST



Algorithm 1 Greedy Rank-One Update
1: procedure GROU(f, A, ¢, tol, rank_max)

2: ro="F

3: u=0

4 for i =0,1,2,...,rank_max do

5: y = procedure (minrank®x§1 Hrz - AyH%)
6: rit1 =r; — Ay

7 u—u+y

8: if ||rix1]l2 < e or ||rix1]l2 — ||ri|l2] < tol then goto 13
9: end if

10: end for

11: return u and ||Frank_max||2-

12: break

13: return u and |rjyq1|2

14: end procedure

Proof Let 6 = {||b — Ax||2 : x € S1} C R. Since it is bounded below, there exists
v = inf& = infyes, |b — Ax||2 > 0. Moreover, for each yg € R Ni such that
voll2 = 7, then xo = A~ (b — yo) satisty that

b — Axgll2 = v = inf ||b — Ax]||2.
XES,
Since + is the infimum of the set &, for each n > 0 there exists x"* € S1 such that
1 n
T+~ 2 b —AxT2 2. (15)
Now, let y"* = b — Ax", then for all n > 0,

yie{y:(v+1) >yl >4},

which is a compact set in the || - [|2-topology. Thus, there exists a subsequence {y"*}
such that y™ — y™* as ny — oo in the || - ||2-topology. In consequence,

X" = A b-y™) eS8 —x =A b-y*) es.

as ng — 00, because Si is a closed set the || - ||2-topology. Finally, substituting in (15)
n by nj and taking limits as n; — 0o, we obtain that ||b — Ax*||2 = v and this ends
the proof of lemma. O

Proof of Theorem 1

It is clear that if f = 0 the theorem follows by consider ug = yg = 0. Thus, from now
one we assume that f # 0.
Recall that ug = yg = 0, and

rn=f—Au, =r,_1 — Ayn,
for all n > 0. By using Lemma 2, the residual at the n-th step ry, satisfy
[enllz = lltn—1 — Aynllz = min |rp—1 — Aylly. (16)
YES1

Since, 0 € S it follows that
[rnllz < llen—1ll2 (17)



for all n > 1. From (17) we have that either there exists k € Z* such that
Ieryillz = [lrkllz <lrjll2 for j <k, (18)
that is, k = rankg (A7) < o0, or
[rntllz < lrnll2, (19)

for all n > 0. The later condition implies that rankg (A7) = oco. In particular we

. kg (AT ) L .
obtain that the sequence {rn};a:rl()@ ( ) is strictly decreasing.

Assume that rankg (A_lf) =k < oo. Since if x; € RN for i = 1,2,...,d, then
Ax] ®X2 ®f -+ - ®@xg € S1 for all A € R. Consequently, we have

lrr — AAx1 @ X2 @ - ®@Xg)ll2 > [|Iri]l2 (20)

for every A € R. This implies that ri and A(x; ® x2 ®y, - - - ® X4) are orthogonal. Since
the vectors x; € RV for i = 1,2,...,d, are arbitrary and A has full rank, this means
that ry = 0 and in consequence u; = A7f and r; =0 for all j > k.
Let be
D={w:w=Ay,|w|2=1andy € S},

then
min ||b — Ax|l2 = min ||b— Aw]|2
yES1 weD, eR
Note that
b = Aw||3 = [[b]3 — 2A(b, w) + A?, (21)
then the minimum for |[b — Aw||2 when w € D is obtained for A = (b, w) > 0 and
2 2 2
[b—Aw(2 = |[bll2 — [(b, w)|".
Thus,
in [b—Ay|3=_min__|b—Awl3 22
min b= Ay[f = _min_ b w3 (22)
= min ||b — (b, 3 23
min [|b — (b, w)wl|2 (23)
= |b|} - b, w)|?. 24
I3 — ma (b, w) (24)

By using (16) and (22)-(24) we have that for each 1 < n < rankg (A7) there exists
wn, € D, such that

Ayn = (Tn_1,Wn)Wn. (25)
Thus,
[Aynllz = (rn—1,wn) >0,
and
(tn—1,Wn) > [(rp—1,w)|, (26)
for all w € D.
From (22)-(24) and (25) we obtain
Irnll3 = rn—1 — Ayal3 (27)
= rn—1ll3 = [(tn—1, wn)|? (28)

= el (1= 63), (20)



forall1<n< rankg (A7) and where

<rn717wn> <rn717AYn>
pn = = =cosfy € (0,1).
" el TenetlalAynlz 0 € OV

Proceeding inductively from (27)-(29) follows (12).
From (28) we obtain that

n
2 2 2
lealld = [I£13 = > Krj—1,w;)] (30)
=1

for all 1 < n < rankg (A7Lf). Since the sequence {||rn|[2}5% is decreasing and
bounded below, there exists

n
. 2 2 2 . 2
i e = = 1 = i, 32 - w1
=

In consequence,
rankg (A7)

Sli_nwplP= 0 > o, wy))?
j=1

i=1
is a convergent series. Thus limp—oc [(ry_1, wn)|?> = 0, and from (26) we have that

lim |(r,_1,w)]>=0 (31)

n—o0

for all w € D. Recall that if rankg (A7) < oo then r; =0 for all j > rankg (A71F).
Thus, to end the proof of theorem we need to show that if rankg (Aflf) = o0, then
the sequence {r, 5% is convergent in RV1V2"Ne with the || - ||2-topology. Because if
it is true, let g = limp— oo rp—1. From (31), we have (g, w) = 0 for all w € D. Since
S1 contains a basis of RV1V2"Na ynq A has full rank, then we obtain g = 0. Finally,
limp—oco rp—1 = 0 and the theorem follows.

Thus, to conclude the proof we only need to show that the residuals sequence
{rn}neg is a Cauchy sequence. To prove it the following three lemmas will be useful.

Lemma 3 For each m,n > 1,
[(rn—1, Aym)| < (tn—1, Wn)(Cm—1, Wm)
Proof Since
[(tn—1, Aym)| = [(tn—1, (Cm—1Wm)Wm)| = [(tn—1, Wm)|[(tm-1Wm) < (tn—1, Wn)(Lm—1Wm),
the lemma follows. O

Lemma 4 For every € > 0 and N € N, there exists T > N such that

T

(rr—1,wr) Z<rk—l7wk> <e. (32)
k=1



10

Proof Since Z?’;1<rk_1,wk)2 < oo, for a given € > 0 and N € N we choose n > N
such that Z;‘;n+l<rk_1,wk>2 < ¢/2. Since limy_, o (rr_1, wy) = 0, we can construct
amap 7 : N — N, defined inductively by 7(1) = 1 and

rlk+1)= win {{rm—1,wm) < (v )1, Wrr) |

for all £ > 1, such that 7 is strictly increasing and limy_, ., 7(k) = co. Observe that
for all k£ > 1 and j satisfying that 7(k) < j < 7(k + 1) it follows

(Tt )—1 Wrks1)) < (Trr)—1 Wrh)) < (Tj—1, W5).

Thus

(Cr(kt1)—10 Wr(kt1)) < (rj—1, W;),
for all 1 < j < 7(k+1). Now, we can choose 7 = 7(k + 1) > n large enough, satisfying
that

n
<r7'—17 WT> Z(rkflv wk> < 6/27
k=1
because limg_, o0 (7 (k)—1, Wr(k)) = 0. Then

T T

n
(tro1,wr) > (rp_1,Wi) = (rr_1,Wr) Z (Tpo1, WE) + (T, Wr) D (Tpo1, W)

k=1 = k=n+1

IN

e/2+ Z (rr—1, Wr)(rg—1, wg)
k=n-+1
T

g2+ > (rpoy,wi)?

k=n-+1

o0
g2+ D (rpor,wi)’<e

k=n-+1

IN

IN

This proves the lemma. O

Lemma 5 For each M > N > 0 it follows that

E

en—1 = rar—1l3 < llev—1l3 = Iear—1l3 + (ear—1, war) > (o1, wi).
k=1

Proof Since rny_1 =rp_1 + Zk N ! Ay, we have

M-1
2 2 2
[rn—1 —ra—1ll2 = [en—all2 + [Irar—1l2 — 2 <I'M—1 + ) AYk:rM—1>
k=N
M-1
2 2
=llen-1ll3 = llear—1l3 =2 D (Ayg,rar-1)
k=N
M-1
2 2
< lenv—1ll3 = llrar—1l3 +2 > (rar—1, War)(re—1, wi) by Lemma 3,
k=N
M
2 2 . -
<|lry-1llz — llrar—1ll2 + 2 Z(rM,l,wM)(rk,l,ww by adding positive terms.
k=1



11

This ends the proof of the lemma. O

Since limp—oo [|rnl|3 = R2, and it is a decreasing sequence, for a given & > 0 there
exists ke > 0 such that

R <|ltpm-1]3 < R* +£%/8

for all m > ke. Assume that m > k.. From Lemma 4, for each m + p there exists
7 > m + p such that

(rr—1,wr) Z (rp_1,wg) <e /8
Now, we would to estimate
[tm—1—Tmip-1ill2 < [ltm—1 —rr_1ll2 + [lrr—1 — rmgp—1ll2-
By using Lemma 5 with M = 7 and N = m and m + p, respectively, we obtain that
tm—1 —rr_1]|3 < R* +2/8 — R? + £%/8 = £2/4,
and
[rmip—1 —rr 1l < R*+6°/8 — R? +£%/8 = °/4,

respectively. In consequence {rn}5— is a Cauchy sequence and it converges to 0. O

3 A Block Coordinated Descent Approach for the Rank-One Minimization
Problem

In this section we study the Rank-One minimization problem

in|b-A
Join I x|lg s (33)

that we can write as the following unconstrained optimization problem:

min b —A(x1®---®xq)l- (34)

(%1, ,xq) ERN1T g

A popular method for minimizing a real-valued continuously differentiable function @
of N1 + - -+ + Ny real variables, subject to bound constrains, is the (block) coordinate
descend method. In this method, the coordinates are partitioned into /N blocks and,
at each iteration, b is minimized with respect to one of the coordinate blocks while
the others are held fixed (see Algorithm 2). These cyclic methods have the advantage
of not requiring any information about the gradient to determine the descent direc-
tions. However, their convergence properties are poorer than steepest descend methods.
Moreover, its are attractive because of their easy implementation in some particular
cases as we will see below.
The main result of this section is the following.
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Algorithm 2 A Block Coordinated Descent Algorithm

: Given @ : RMit+Na L R
: Initialize x) € RNi for i =1,2...,d.
:forn=1,2,... do
for k=1,2,...,d do
xp € argmin

n n n—1 n—1
xx ERVE qs(xl?"'7xk717xk7xk+1?"'7xd )
end for

end for

N O Otk W N

Theorem 2 Let b € RNt N2 Na g4ng 4 € RN1N2"'NdXN1N2"'Nd, be an invertible
matriz. Assume that for each k € {1,2,...,d} the (N1 --- Ng) X Ni-matriz

Zpy=AXx1® - @xp_1 ®IN, @Xpq1 ®@Xq)
has linearly independent columns for every (X1,...,Xq) € RN+ 4N satisfying
b—A(x1®- ®xg)y < Hb-A(><‘f®--~®x3)H2. (35)
Then every accumulation point (X7,...,Xy) of the sequence
{0 oxid) b
generated by Algorithm 2 using the map
D(x1,...,%q) =|lb—A(x1 ® - ®@x4)|l2,

satisfies the equation V& (x7,...,x};) = 0. Moreover, assume that X1, ..., Xg—1,Xk+1; - - - » Xd,
are fized for some k € {1,2,...,d}, then

T —-1,T
xi = (Zk Z) " Zi b,
is the global minimum of the directional minimization problem

min [b-AX1® - @Xp_1 OXQXp41 ® - Q@Xg)ly- (36)
xERNE

Proof To prove the theorem we will use the following lemma, that it can be proved by
using the same argument as the proof of Theorem 5.32 in [13].

Lemma 6 Assume that the function @ : RVt +Na R g continuously differentiable
and that the set

X = {(xl,...,xd) e RN+ N cD(x1,...,%q) < @(x?,...,xg)}

1s bounded. Moreover, assume that for every (x1,...,%xq) € X1 the directional mini-
mization problem
min  D(X1,...,Xk—1, Xk, Xk+1s - -»Xq)
xp ERVE
has a unique solution for each k = 1,2,...,d. Then every accumulation point (X7, ..., %)
of the sequence
n n oo
{(xl’“"xd)}n:O’

generated by Algorithm 2 satisfies the equation V®(x7,...,x);) = 0.
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Since

X1 ® X1 @XDXpp1 - @ Xg
=(x1® % 1@ Oxpp1 0% (1@ @1@xR1---®1)
=xX1® - @OXp_1 @I @Xpy1 - O X)X,

we can write
[b—Ax1®: - @x4)lly = b — Zgxll, . (37)
Then, for a fixed x1,...,Xg_1,Xk+1,--.,Xq the directional minimization problem (36)

is equivalent to the standard Least Squares problem

min ||b— Zgx||5 . 38
iy b= Zix]) (39)

Since if Zj, has linearly independent columns then (38) has a unique solution
T —-1,T
xg = (Zk Z)” Z b,
from Lemma 6, the theorem follows. O

Note that given a point (x1,...,X4), descend with respect to the coordinate xy,
means, from Theorem 2, that we need to solve the standard least squares problem (38).
In particular we minimize @ cyclically with respect to the coordinate variables Thus,
Theorem 2 allow to us to solve the rank-one minimization problem (33) by means the
Alternate Least Squares (ALS) Algorithm 3. We point out that for high-dimensional
problems the numerical implementation of solving the equation

z2F zix = 71 x, (39)
can be a hardly task. However, if the matrix A can be represented also in separated

representation form, then as the following corollary shows (39) can be implemented in
a more easy way by using the properties of the Kronecker product.

Algorithm 3 ALS Algorithm

1: procedure ALS(b, A, iter_max, tol)

2: Initialize x{ for i =1,2...,d.

3 iter =1

4: while iter < iter_max do

5: )A(k<—x2,k:l,...,d

6: for k=1,2,...,d do

7 Z=AX)® - @x}_; ®IN, @ Kkt1® - @Ka)
8: x0 = (2T2)"1ZTb

9: end for

10: if szl Ix? — %kll2 < tol then goto 14
11: end if
12: iter = iter + 1
13: end while
14: return x° = (x9,...,x9)

15: end procedure
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Corollary 1 Assume that

TA . .
A=>"Alw-- oA,
j=1

where Ag e RViXNi fori=1,2,...,dand j =1,2,...,ra. Let k € {1,2,...,d} and

assume that for x1,...,Xk_1,Xk+1,---,Xq fized, the (N1 --- Ng) X Ng-matriz
T.A . . . . .
2= S AP A s A 6 A i A
j=1

has linearly independent columns. Then
xi = (2 Zx) "' Zi . (40)
is the global minimum of of the directional minimization problem (36).
This corollary implies that we can solve the minimization problem

TA
b—) Alx1® - ® Ayxg
=1

min
(X1,0005%Xd)

; (41)
2

by means the ALS Algorithm 4.

Algorithm 4 ALS with A is separable form
1: procedure ALS(b,> /4 Al @ - ® A%, iter_max, tol)

2:  Initialize x{ for i =1,2...,d.

3: iter =1

4: while iter < iter_max do

5: fck<—x2,k:1,...,d

6: for k=1,2,...,d do

7 Z = Z;‘lil Agj)x(l) - ® Agc]—)lxg—l ® Al(cj) ® Al(cjll’%k-kl e ® Ag)’%d
8: x0 = (2T2)"1ZTb

9: end for

10: if HZ:I Ix? — %k|l2 < tol then goto 14
11: end if

12: iter = iter + 1

13: end while

14: return x° = (x9,...,x9)

15: end procedure

4 Numerical examples

In order to illustrate the Greedy Rank-One Update Algorithm 1 by using the Alternate
Least Squares Algorithms 3 and 4 we give the following examples. First, we compute
. 143 . . . 1 2 3 .
for a given vector f € R*® its approximation by a vector 2?21 f; @ fj ® £;. To this
end we consider
A=IQRIRI
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where [ is the identity matrix of size 14 x 14. We take as a choice of f a random vector.
Then for the parameter values iter_max = 10, rank_max = 1000 tol = 2.22e — 16, and
€ = 1.0e — 08, we compute the sequences {0;}_;, given by (13), and {Hrj||2}?:0 As
can be seen in Figure 1, the first one is an oscillating sequence around approximately
1.39, and, as Theorem 1 shows, the norm residuals is strictly decreasing. The algorithm
stopped at n = 1000 after 8.9 seconds with a relative error equal to 2.86238020895006e—
08.

12 f
141 gy |

139 F
138
137
1.36
135+ [ 7

0 200 400 600 800 1000

rank

log10(residual)

rank

Fig. 1 The sequences {0; ;0:0107 and {log;, ||rj||2}}0:%0 when A is the identity matrix.

Now, in our second example we would to study the relationship between the se-
quence of angles {0;}7_; C (0,7/2), given in the statement of Theoreml, and the
sequence of the norm of the residuals {||r;|[2}}—;. Here n is the rankg u where U is

a numerical approximation of A~ Motivated by the above example we consider the
mean angle, denoted by

1 n
On =~ Zej,
Jj=1
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of a finite sequence {6; }?:1. Now, we perform the following numerical experiment. We
fix the values N1 = 3, No2 = 4, tol = 2.22e¢ — 16, ¢ = 1.0e — 08, iter_max = 10 and
rank_max = 1000. We repeat the following procedure 500-times. First, we generated
randomly a matrix A € ]RNlNzXNlNz, and a solution A_lf7 in order to construct
the right-side hand f of the linear system. Finally, we run Algorithm 1 to obtain an
approximate solution U with rankg U and a mean angle gmnkg a

In Figure 2 we can see a sample obtained in this experiment, for this particular
case the approximate solution U had rankgﬁ = 62, with a relative error equal to
9.47228661927500e — 08. Moreover, the the matrix A was nearly singular with a con-
dition number equal to 488. Note, that the angle sequence, as we can see in Figure 2,
oscillates around 6, kg @ = 0.949051119522545.

ran

In Figure 3 we plot the mean angle as a function of the rankg of the approximate
solution. From this picture we can deduce that some weakly linear dependence exists.

6, —— b
mean(eg 777777
! 1 !
20 30 40 50 60
rank
2L i
3t i
¢ 5l |
s i
8 | | | | |
10 20 30 40 50 60

rank

Fig. 2 The sequences {0]-}?2:1, and {log;q ||1"j||2}§'i0 when we take as a choice of A a 20 x 20
random matrix.
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B j
gy 8
KK ¥ SR y “

12 - Bl

111 b

Srank

09 b

08 - i

0.7 =
% I I I I I I I I I

100 200 300 400 500 600 700 800 900 1000

rankg‘ Uy

Fig. 3 The mean angle 8, ¢ g as a function of rankg u. The discontinuous line is the least
®

rank

squares straight line y = (7.69351915752358¢ — 05)x + 1.36946939179450.

4.1 A model problem: The Poisson equation in (0,1)%

In this section we present the following example. Recall that the Poisson problem reads

— — 3 d
{ Au=fin 2CR (42)
ulpe = 0.
where f = f(x1,%2,...,2q) is a given function and A = Zgzl 66—;2 is the Laplace

operator. In order to find its variational formulation, we recall thelfollowing Green
formula for the Laplacian:

—/Auvdx:/Vu-Vvdx—/ %Ud'y. (43)
0 o a5 On

Assume that 2 = (0, l)d. and for d = 1,2, ... let be the bilinear form
aq(u;v) = / Vu - Vv dx.
2

Take d = 3 in (42) and then we can easily deduce that u satisfies the following problem:
Find u € H}($2) such that

az(u;v) = /Q fvdx for all v € H&(Q). (44)
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The Galerkin approximation to (44) reads:
find up, € Vj, : as(up;vp) = / fopdx Yo, € V. (45)
2

Assume V;, = P® P® P where P = span{w?’,..., 0w’} and w!,... w® in H}(0,1)
are the following N-linearly independent maps. First, we partitioned the interval [0, 1]
into N-parts

0=1m <§2<...<§N+1:1.

Denote h; = Z; 1 — 2; and h = maxi<;<n h;. For i =1,2,...,N — 1, let
0 (x —25)/hy 2 <o <Bigq
w(z) = @ig2 — ) /hit1 Tip1 <o < Tigo,
0 otherwise

These functions are continuous and piecewise linear. It is easy to see that they are lin-
early independent. The first order weak derivatives of the basis functions are piecewise
constant. Indeed for it =1,2,...,N —1

d o 1/h; T <z <Tip
d*w(l)(m) =4 —1/hig1 Zip1 <2 < Tiqo,
7 .
0 otherwise
We assume that we have an uniform partition, that is, h; = hfor ¢ = 1,2,..., N. Then
the following formulas are useful
1 ) )
/O %w(z)(x)%w(hl)(m)dx:f% for2<i< N -1, (46)
1 ) 2
/0 (d%w(’)(x)) dm:%, for 1<i<N-—1, (47)
e ; h
/ W (z) w(zfl)(m)dx =5 for2<i< N -1, (48)
0
1 (%) 2 2h
/ <oﬂ(x)) dr= 3 for 1<i<N -1, (49)
0

Now, let the stiffness multilinear matrix Az defined by

(Ag)jl,jz,ja;il,i27i3 = as(w(il) ®UJ(12) ® UJ(ZS),(L)(‘]l) ®w(]2) ®UJ(‘73))

_ / 0w 9wl (i) (i) (i) ()
0 &El 8l’1

dwiz) Mw(il)w(jl)w(i3)w(j3)
Ory  Oxa

82):3) ag;jg)w(il)w(jl)w(i2)w(j2)) dx
2 2

= Ajl;ilsz;isze,;ia. + le;ilAjz;iszl;il + le;ilsz;izAja;im
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where
1

Aji = al(w(i);w(j)) and Bj;; = / w® (ac)w(j)(:r)da:.
0

Then, by using (46)-(49), we have that

2 1 2h h
R R 3 6
I Y hooh n
h h h 6 3 6
A: ..' ..' ..' andB: . . ..'
121 h2h h
h h h 6 3 6
8 b o2h
h h 6 3

Finally, by using (2), we obtain that
(A3)jy ja,jssinsinsis = (AR B®B+BRAQ®B+B®B® A)s:.
On the other hand we have that
/Q @00 ©0l) @)y = 7y o
In order to solve (45) we consider a map in V}, given by
up, = Z Ui, inis W) ®w(i2) ®w(j3)’
11,12,13
where U;, iy is = U(Ti, 41, Tig+1, Tig+1)- Thus,
Up,iz iy = Uiy kyis = Uiy ig e = 0

for k € {0, N}. Substitute uy in (45) with v, = w) @ wU2) @ w73) . Then we obtain

that
N—-1

D (B3)j o asinsineisUin insis = Fin dn.ds (50)

i1,i2,i3=1
must be hold for all ji,j2,753 € {1,..., N — 1}. This implies that (45) is equivalent to
solve the following linear system

(A B B+ B A® B+ BRB® A)ju="f, (51)

here we consider that a general multi-index tensor can be represented by a standard
vector by using that

Vit gz.eja = Vs
if and only if
d—1 d
s=ja+ > |Gi-1 [] N
=1 U'=Il+1

For a general d > 2 it can be shown that in order to solve numerically (42) we need
to solve the following linear system:

d . .
ZA%J)®~~®AEIJ) u="f. (52)
j=1
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where )
2@ A k=g,
k B if k#j.
Finally, it is not difficult to show that A and B are symmetric and definite positive
matrices. Then, from the properties 7-8 listed at the end of Section 1, Z?:1 Agj) ®

e ® Agj) is a symmetric and definite positive matrix. In consequence, it is invertible.

Some numerical examples

Ezample 1 Firstly, we consider the following problem in 3D: Solve for

(z1,22,23) € 2 = (0,1)° :

—Au = (2m)? - 3 - sin(2rzy — 7) sin(2rzy — 7) sin(2raz — ), (53)
ulpn =0, (54)

which has as closed form solution
u(x1,z2,x3) = sin(2rxy — ) sin(2rxy — ) sin(2wx3 — 7).

We used the separable representation algorithm given in Section 2 with parameter
values iter_max = 5, rank_max = 1000 and € = 0.001. The algorithm give us an ap-
proximated solution u; € S1. In Figure 4 we represent the relative error of the solution
computed using the separable representation algorithm, using logarithmic scale, as a
function of the number of nodes used in the discretization of the Poisson equation.
All the computations were performed using the GNU software OCTAVE in a AMD 64
Athlon K8 with 2Gib of RAM.

In Figure 5 we represent the CPU time, in logarithmic scale, used in solving the
linear system (52) against the separable representation algorithm. In both cases all the
linear systems involved were solved using the standard linear system solver (A\b) of
OCTAVE.

Ezample 2 Finally we are addressing some highly multidimensional models. To this
end we solve numerically (42) for (z1,...,z4) € 2 = (0,7)% where

f

d d
37 (L kysin ) (@) (—kcosz(xk) ¥ sin2(xk)) [T sin) @),
k=1 k'=1,k'#k

which has as closed form solution

d
u(zy,...,zq) = H sin(k+1)(xk).
k=1

Here we consider the true solution u given by U, . i, = w(ZTi+1,---,%iy+1). For
d = 10 we use the parameter values iter_max = 2, rank_max = 10 and ¢ = 0.001.
In a similar way as above the algorithm give us an approximated solution u € Sj.
In Figure 6 we represent the absolute error ||[u — u||2 as a function of h = ©/N for
N = 5,10,20,...,160 in logg-scale. By using similar parameters values the problem
has been solved for d = 100 in about 20 minutes.
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T T
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Fig. 4 The relative error |ju; — A71f||2/||A~1f||2 in logarithmic scale.

5 Concluding Remarks

In this paper we prove the convergence of the Greedy Rank-One Update Algorithm
for solving linear systems with a full rank matrix. Moreover, we study the Rank-One
Minimization Problem and show that a Block Cyclic Coordinate Descend strategy
implies an Alternating Least Squares Algorithm. As we can show the method runs
under very weak conditions, recall that we only use the assumption that the linear
system has a an invertible matrix. However, its efficiency depends strongly on the
matrix form (symmetric, tridiagonal, full, sparse, ...).
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