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Abstract

In this paper, we propose some alternative de�nitions of tensor product ap-
proximations based on the progressive construction of successive best rank-one
approximations, with eventual updates of previously computed elements. In par-
ticular, it can be interpreted as a constrained multidimensional singular value
decomposition where the constraints are imposed by means a penalty method. A
convergence proof of these decompositions is established under some general as-
sumptions on the penalty functional. Heuristic alternated direction algorithms
are provided, also de�nitions and algorithms are detailed for an application of
interest consisting in imposing bounds on each tensor component.

Key words: Tensor product approximation; Constrained Separated
Representation; Penalization; Convex optimization; Constrained Singular
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1. Introduction

Tensor product approximation has become a major tool in many domains
of scienti�c computing for the representation of elements in high-dimensional
tensor product spaces. It consists in approximating an element u of a tensor
product space V = V1 ⊗ . . .⊗ Vd by a sum of elementary tensors

u ≈ um =
m∑
i=1

w1
i ⊗ . . .⊗ wd

i

with wk
i ∈ Vk. The dimensionality of this type of representation only grows

linearly with the dimension d and therefore, it allows to circumvent the so
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called curse of dimensionality. A �rst family of applications using tensor de-
compositions concerns the extraction of information from complex data. It has
been used in many areas such as psychometrics [28, 6], chemometrics [3], anal-
ysis of turbulent �ows [4], image analysis and pattern recognition [30], data
mining... Another family of applications concerns the compression of complex
data (for storage or transmission), also introduced in many areas such as signal
processing [19] or computer vision [31]. A survey of tensor decompositions in
multilinear algebra and an overview of possible applications can be found in
the review paper [17]. In the above applications, the aim is to compress the
best as possible the information or to extract a few modes representing some
features to be analyzed. The use of tensor product approximation is also receiv-
ing a growing interest in numerical analysis for the solution of problems de�ned
in high-dimensional tensor product spaces, such as PDEs arising in stochastic
calculus [2, 5, 12] (e.g. Fokker-Planck equation), stochastic parametric PDEs
arising in uncertainty quanti�cation with spectral approaches [21, 11, 22]. In
the context of approximation, the aim is to represent the tensor with a given
accuracy, without necessarily requiring an optimal compression of the tensor.

Many de�nitions of tensor product approximations have been proposed. A
natural de�nition of a rank-m tensor product approximation is based on the
following best approximation problem

inf
um∈Sm

∥u− um∥2 (1)

where ∥ · ∥ is the norm on V and Sm is an optimization subset of rank-m ten-
sors. For dimension d = 2, and when ∥ · ∥ is a crossnorm on a tensor product
Hilbert space V [14], this de�nition coincides with the classical truncated singu-
lar value decomposition of u, also called Proper Orthogonal Decomposition or
Karhunen-Loeve expansion in other contexts. For d ≥ 3, optimization problem
(1) appears to be ill-posed [9] if formulated on the whole set of rank-m ten-
sors. This speci�city has led to the introduction of various de�nitions of tensor
product approximations based on di�erent choices for the optimization sets Sm

[29]. They can be considered as multidimensional versions of the singular value
decomposition.

In this paper, we propose alternative de�nitions for tensor product approx-
imations based on successive rank-one best approximations, with eventual up-
dates of previously constructed elements. The main contribution consists in
introducing a methodology for constructing tensor product approximation of
tensors submitted to additional constraints. The question is: how to modify
the classical de�nitions of tensor product approximations in order to have an
approximation which still veri�es the constraints or at least which veri�es the
constraints �better� than classical tensor product approximations ? We propose
to impose the constraints approximately with a penalty method which consists
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in de�ning the decomposition um with a modi�ed best approximation problem

inf
um∈Sm

1

2
∥u− um∥2 + jϵ(um) (2)

where jϵ is a penalty function associated with the constraints, with suitable
properties ensuring the existence of a minimizer. An application of interest
which will be detailed and illustrated concerns the case where we want the com-
ponents of the approximation to be bounded (upper, lower or lower and upper
bounded). Let us consider the case where V is a set of functions u : Ω → R
de�ned on a cartesian domain Ω = Ω1 × . . .×Ωd ⊂ Rd, and consider a function
u which is bounded by two constants a and b, i.e. a ≤ u(x) ≤ b. Classical tensor
product approximations do not guaranty that this property is preserved for a
truncated approximation um. Moreover, for general functions u, we may not
have a uniform convergence of um, which means that we can not expect to verify
the constraint (almost) everywhere for a given �nite rank m. However, preserv-
ing the boundedness properties may be of great importance in some situations.
For example, let us consider a di�usion problem −∇ · (u(x)∇p(x)) = f(x),
where u denotes the di�usion parameter �eld. In order to apply e�ciently so-
lution techniques based on tensor product approximation of the solution p, the
di�usion operator must be approximated in a separated form. It consists in
replacing u by a tensor product approximation um. However, it requires to
verify 0 < a ≤ u(x) ≤ b < ∞ almost everywhere in order to preserve the well-
posedness of the di�usion equation.

The outline of the paper is as follows. In section 2, we brie�y recall some
de�nitions about tensor product spaces in in�nite and �nite dimensional Hilbert
spaces. In section 3, we recall classical de�nitions of tensor product approxi-
mations and we detail de�nitions based on progressive constructions of best
rank-one approximations, with eventual updates of previously computed ele-
ments. In section 4, we introduce new de�nitions of constrained tensor prod-
uct approximations based on a penalty method and we propose algorithms for
their constructions. Convergence proof of the decompositions are given under
some assumptions on the penalty function. In section 5, we apply the previous
de�nitions to the case where we want to impose bounds on tensor product ap-
proximations. An illustration is given for the separated representation of the
indicator function of a three-dimensional object. A possible application con-
cerns the coupling of tensor product solvers with �ctitious domain formulations
for the solution of PDEs [23, 25].

2. Tensor product spaces

2.1. Tensor product of Hilbert spaces
We consider Hilbert spaces Vk, 1 ≤ k ≤ d, equipped with inner products

(·, ·)k and associated norms ∥ · ∥k. We de�ne the set of elementary tensors (or
rank-one tensors)

R1 = {w = w1 ⊗ . . .⊗ wd;wk ∈ Vk, 1 ≤ k ≤ d}
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and the set of rank-m tensors

Rm = {vm =
m∑
i=1

wi;wi ∈ R1, 1 ≤ i ≤ m} = Rm−1 +R1

The algebraic tensor product space is de�ned as the span of elementary tensors

a⊗d
k=1 Vk = span{R1}

For each element v ∈ a⊗d
k=1 Vk, there exists m ∈ N such that v ∈ Rm. The

algebraic tensor product space is now equipped with the canonical inner product
(·, ·) de�ned as follows. For elementary tensors w = ⊗d

k=1w
k ∈ R1 and v =

⊗d
k=1v

k ∈ R1, we let

(w, v) = (⊗d
k=1w

k,⊗d
k=1v

k) =
d∏

k=1

(wk, vk)k

This de�nition is then extended by linearity on the whole algebraic tensor
product space: for w, v ∈ a⊗d

k=1 Vk, there exists m,m′ ∈ N such that w =∑m
i=1 ⊗d

k=1w
k
i and v =

∑m′

i=1 ⊗d
k=1v

k
i , and the inner product (v, w) is de�ned by

(v, w) =

m∑
i=1

m′∑
j=1

(⊗d
k=1w

k
i ,⊗d

k=1v
k
j ) =

m∑
i=1

m′∑
j=1

d∏
k=1

(wk
i , v

k
j )k

The norm associated with (·, ·) is denoted ∥ · ∥. For an elementary tensor w =
⊗d

k=1w
k ∈ R1, the norm veri�es

∥ ⊗d
k=1 w

k∥ =

d∏
k=1

∥wk∥k

which is the property of a crossnorm. The algebraic tensor product space a⊗d
k=1

Vk is a pre-Hilbert space when equipped with inner product (·, ·). A Hilbert
space V equipped with inner product (·, ·) and associated norm ∥ · ∥ is obtained
by the completion of the algebraic tensor product space

V = a⊗d
k=1 Vk

∥·∥

We have the following important topological property of the set of rank-one
tensors (see [13] for a proof).

Lemma 2.1. The set R1 is weakly closed in V .

Let us note that equivalent norms induce the same topology on V . Therefore,
for any topology associated with a norm equivalent to a crossnorm, the set R1

is also weakly closed. The connection between the choice of norms and the
induced topological properties are detailed in [24]. In particular, for the choice
of norms leading to a weakly closed set R1, it is given weaker conditions than
the equivalence with a crossnorm.
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2.2. Finite dimensional case

In the �nite dimensional case, we can assume that Vk = Rnk , up to an isomor-
phism. An element wk ∈ Vk is then represented by a vector wk =

∑nk

l=1 w
k
l e

k
l ∈

Rk, where the {wk
l }

nk

l=1 are the components of wk on the canonical orthonormal
basis {ekl }

nk

l=1 of Rnk . Each Vk is endowed with the canonical inner product (·, ·)k
and associated norm ∥ · ∥k, de�ned for elementary tensors w = ⊗d

k=1w
k ∈ R1

and v = ⊗d
k=1w

k ∈ R1 by

(w, v) =

d∏
k=1

(wk, vk)k =

d∏
k=1

nk∑
lk=1

wk
lk
vklk , ∥w∥2 =

d∏
k=1

∥wk∥2k =

d∏
k=1

nk∑
lk=1

(wk
lk
)2

V coincides with the algebraic tensor product space and V = span{R1}. V is
isomorphic to the set of multidimensional arrays Rn1×...×nk . A tensor u ∈ V
admits a full representation

u =

n1∑
l1=1

. . .

nd∑
ld=1

ul1,...,lde
1
l1 ⊗ . . .⊗ edld :=

∑
l∈L

ulel

where L = {(l1, . . . , ld) ∈ Nd; 1 ≤ lk ≤ nk} is the set of multi-indices and the
ul = ul1,...,ld are the components of u on the canonical basis {el = ⊗d

k=1e
k
lk
}l∈L.

Components of a rank-1 tensor w = ⊗d
k=1w

k ∈ R1 are

wl1,...,ld = w1
l1 . . . w

d
ld

Components of a rank-m tensor u =
∑m

i=1 w
1
i ⊗ . . .⊗ wd

i ∈ Rm are

ul1,...,ld =
m∑
i=1

w1
l1,i . . . w

d
ld,i

For u, v ∈ V , the above de�nitions yield the following classical de�nition of the
canonical inner product and associated norm on V :

(u, v) =

n1∑
l1=1

. . .

nd∑
ld=1

ul1,...,ldvl1,...,ld , ∥u∥2 =

n1∑
l1=1

. . .

nd∑
ld=1

(ul1,...,ld)
2

In the case of �nite dimensional Hilbert spaces, all norms induce the same
topological vector space V , and therefore, Lemma 2.1 implies that R1 is a
closed set in V , whatever the choice of norm.

Lemma 2.2. For a �nite dimensional tensor product Hilbert space V , the set
R1 is closed in V .

3. Tensor product approximations

An optimal rank-m representation of u ∈ V could be naturally de�ned by
the following best approximation problem:

inf
vm∈Rm

∥u− vm∥2 (3)
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For d = 2, it leads to a classical singular value decomposition of u, truncated at
rank m. However, for d ≥ 3, Rm is not weakly closed in V , even in the �nite
dimensional case [9]. Therefore, the minimization problem (3) is ill-posed since
a minimizer in Rm does not necessarily exist. A �less optimal� but well posed
rank-m approximation um can be de�ned by

∥u− um∥2 = min
vm∈Sm⊂Rm

∥u− vm∥2 (4)

where Sm is a suitable subset in Rm which ensures the existence of a minimizer.
Of course, depending on the choice of Sm, di�erent types of decompositions
arise. In this section, we recall some classical de�nitions and investigate di�erent
alternative de�nitions which lead to well posed de�nitions of the approximation.

3.1. Tensors sets with orthogonality constraints

The set Sm can be de�ned by imposing suitable orthogonality conditions
between rank-1 tensors of the decomposition of a rank-m tensor. Let w =
⊗d

k=1w
k and v = ⊗d

k=1v
k be two rank-one tensors. We de�ne di�erent types of

orthogonality:

• Orthogonality: w and v are said orthogonal if and only if (w, v) =
∏d

k=1(w
k, vk)k =

0. It is denoted w ⊥ v.

• Strong orthogonality: w and v are said strongly orthogonal if and only
if w ⊥ v and for all k ∈ {1, . . . , d}, we have either (wk, vk)k = 0 or
wk = λkvk for some λk ∈ R. It is denoted w ⊥s v.

• Complete orthogonality: w and v are said completely orthogonal if and
only if (wk, vk) = 0 for all k ∈ {1, . . . , d}. It is denoted w ⊥c v.

To the above de�nitions of orthogonality, we associate di�erent subsets of rank-
m tensors:

• R⊥
m = {

∑m
i=1 wi ∈ Rm;wi ⊥ wj for i ̸= j}

• R⊥s
m = {

∑m
i=1 wi ∈ Rm;wi ⊥s wj for i ̸= j}

• R⊥c
m = {

∑m
i=1 wi ∈ Rm;wi ⊥c wj for i ̸= j}

We have the following inclusions:

R⊥c
m ⊂ R⊥s

m ⊂ R⊥
m ⊂ Rm.

It is proved in [29] that the best approximation problem (4) admits a minimizer
when choosing for Sm the subsets R⊥c

m , R⊥s
m or R⊥

m. Let us note that for
every tensor u ∈ V , there exists a sequence {um} ⊂ R⊥

m or {um} ⊂ R⊥s
m

that converges to u. This is due to the fact that the tensor product space
admits a strongly orthogonal Hilbertian basis. However, a tensor u ∈ V does
not necessarily admits a convergent representation {um} ⊂ R⊥c

m . Therefore,
complete orthogonality has to be imposed with caution.
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Another choice for Sm consists in taking the Tucker space Tr, with r =
(r1, . . . , rd) ∈ Nd, de�ned by

Tr =

{
r1∑

i1=1

. . .

rd∑
id=1

αi1,...,idw
1
i1 ⊗ . . .⊗ wd

id
;αi1,...,id ∈ R, wk

i ∈ Vk, (w
k
i , w

k
j )k = δij

}
(5)

The set Tr is a weakly closed set in V [15] and therefore, the best approximation
problem (4) is also well posed on the set Sm = Tr ⊂ Rm, with m =

∏d
k=1 rk.

Let us note that we have R1 = T(1,...,1) and Rm ⊂ T(m,...,m).

Remark 3.1. In the Tucker representation (5), α = (αi1,...,id) ∈ Rr1×...×rd is

called the core tensor. Let us note that the number of components m =
∏d

k=1 rk
in the core tensor grows exponentially with d, if card{k ∈ {1, . . . , d}; rk ≥ 2} →
∞ as d → ∞.

The reader can refer to [7, 18, 17, 29] for a detailed presentation of the above ten-
sor product approximations and of the related algorithms for their construction.
Let us note that other de�nitions are also available [28, 16].

3.2. Progressive constructions

We here present alternative de�nitions of rank-m approximations based on
the progressive construction of optimal rank-one elements, with eventual up-
dates of the previously computed vectors. Let us note that they can be in-
terpreted as updated Greedy approximations [10, 27] where dictionary is com-
posed by elementary tensors. These de�nitions appear as particular cases of
constrained approximations which are proposed in section 4.

3.2.1. Purely progressive construction

Another way to obtain a well-posed problem (4) is to construct the approx-
imation progressively. Knowing an approximation um−1 ∈ Rm−1, we de�ne the
set

Sm = um−1 +R1 ⊂ Rm.

Since R1 is a weakly closed set in V , the above set Sm is also a weakly closed
set and therefore, the best approximation problem (4) is well de�ned and allows
to de�ne a new element um = um−1 + wm ∈ Rm, where the new rank-one
term wm ∈ R1 appears as a best approximation in R1 of the residual u −
um−1. This construction de�nes a multidimensional version of a singular value
decomposition, known in multilinear algebra as the best rank-one decomposition
of a tensor [8].

De�nition 3.2 (MSVD). For an element u ∈ V , the purely progressive mul-
tidimensional singular value decomposition is de�ned as a sequence of rank-m
approximations um =

∑m
i=1 wi ∈ Rm de�ned progressively as follows:

∥u− um−1 − wm∥2 = min
w∈R1

∥u− um−1 − w∥2 (6)
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We have the following property:

∥u− um∥2 = ∥u∥2 −
m∑
i=1

σ2
i −−−−→

m→∞
0

where

σi = ∥wi∥ = max
w∈R1,∥w∥=1

(u− ui−1, w) (7)

σi can be interpreted as the dominant singular value of u−ui−1. For convergence
results in in�nite dimensional Hilbert spaces, the reader can refer to [13]. Note
that this de�nition of singular value has also been introduced in [20].

Remark 3.3. The map

ε : v ∈ V 7→ ε(v) = max
w∈R1,∥w∥=1

(v, w) ∈ R+

is a particular crossnorm called the injective norm [14]. The dominant singular
value σi de�ned in (7) then appears to be the injective norm of the residual
u − ui−1, i.e. σi = ε(u − ui−1). This interpretation can be found in quantum
physics [26].

Remark 3.4. In the case d = 2, De�nition 3.2 coincides with the classical
singular value decomposition. For d = 2, equation (7) writes

σi = max
w1⊗w2∈R1,∥w1⊗w2∥=1

(u− ui−1, w
1 ⊗ w2)

For u ∈ V and w1 ∈ V1, we de�ne {u,w1}1 ∈ V2 such that ({u,w1}1, w2)2 =
(u,w1 ⊗ w2) for all w2 ∈ V2. In the same way, for u ∈ V and w2 ∈ V2, we
de�ne {u,w2}2 ∈ V1 such that ({u,w2}2, w1)1 = (u,w1 ⊗ w2) for all w1 ∈ V1.
Next, we de�ne the operators U : w1 ∈ V1 7→ {u − ui−1, w

1}1 ∈ V2 and U∗ :
w2 ∈ V2 7→ {u−ui−1, w

2}2 ∈ V1. U
∗ is the adjoint operator of U , i.e. such that

(Uw1, w2)2 = (w1, U∗w2)1 for all (w1, w2) ∈ V1 × V2. The dominant singular
value can then be written:

σi = max
w1∈V1,w2∈V2,∥w1∥1=1,∥w2∥2=1

(Uw1, w2)2

After an elimination of w2, we obtain w2 = Uw1/∥Uw1∥2 and the previous
expression becomes:

σi = max
w1∈V1,∥w1∥1=1

√
(w1, U∗Uw1)1

which is the classical de�nition of the dominant singular value of operator U ,
which is the square root of the dominant eigenvalue of operator U∗U . Equiva-
lently, after an elimination of w1, we obtain w1 = U∗w2/∥U∗w2∥1 and

σi = max
w2∈V2,∥w2∥2=1

√
(w2, UU∗w2)2

This property motivates the interpretation of De�nition 3.2 as a multidimen-
sional version of a singular value decomposition.
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Remark 3.5. Let us note that the progressive construction could be also de�ned
by replacing R1 by the Tucker space Tr, which is also a weakly closed set in V .
A sequence {um}m∈N is then de�ned progressively by letting um = um−1 + zm,
with zm ∈ Tr de�ned by

∥u− um−1 − zm∥2 = min
z∈Tr

∥u− um−1 − z∥2

We then have um ∈ Tr∗ ⊂ Rm∗ , with r∗ = (mr1, . . . ,mrd) andm∗ = md
∏d

k=1 rk.

3.2.2. Progressive construction with updates

Convergence properties of the progressive construction can be improved by
introducing updates of previously computed tensors. These updates are per-
formed along selected dimensions. LetD ⊂ {1, . . . , d} be a subset of dimensions.
For a given k ∈ D and a given um =

∑m
i=1 ⊗d

k=1w
k
i ∈ Rm, let us introduce the

space

Rk
m(um) =

{
m∑
i=1

w1
i ⊗ . . .⊗ vki ⊗ . . .⊗ wd

i ; v
k
1 , . . . , v

k
m ∈ Vk

}
⊂ Rm (8)

where vectors {wk′

i }mi=1 are �xed for all k′ ̸= k. Rk
m(um) is a linear subspace of

Rm. We then de�ne the map

F k
m : um ∈ Rm 7→ zm = F k

m(um) ∈ Rk
m(um)

which updates the vectors {wk
i }mi=1 associated with dimension k. The map is

de�ned as follows:

zm = F k
m(um) ⇔ ∥u− zm∥2 = min

vm∈Rk
m(um)

∥u− vm∥2 (9)

Note that the minimization problem on Rk
m(um) is ill-posed if the linear sub-

space Rk
m(um) is not a closed linear subspace of V . If such a degeneracy is

detected, we simply let F k
m(um) = um (no update performed). Now, for a given

set D of updated dimensions, we de�ne the map FD
m as the composition of maps

{F k
m}k∈D:

FD
m = F d1

m ◦ . . . ◦ F d#D
m

where we let D = {d1, . . . , d#D}, with #D the cardinal of D. Let us note that
di�erent orderings of the set D yield di�erent de�nitions of the map FD

m .

De�nition 3.6 (Updated MSVD). For an element u ∈ V , the updated pro-
gressive multidimensional singular value decomposition is de�ned as a sequence
of rank-m approximations um ∈ Rm de�ned progressively as follows: for um−1 =∑m−1

i=1 wi ∈ Rm−1 given, we de�ne u⋄
m ∈ um−1 +R1 by

∥u− u⋄
m∥2 = min

w∈R1

∥u− um−1 − w∥2

and we de�ne um by applying Nup times the updates along a set of dimensions
D:

um = FD
m ◦ . . . ◦ FD

m︸ ︷︷ ︸
Nup times

(u⋄
m)
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3.2.3. Algorithm

Alternated direction algorithm for minimization in R1. For a given um−1 ∈
Rm−1, an optimal rank-one element wm ∈ R1, de�ned by (6), can be con-
structed with the Alternated Direction Algorithm 1.

Algorithm 1 (Alternated Direction Algorithm).

1: Initialize w ∈ R1 with ∥w∥ = 1
2: loop {Maximum number of iterations Nalt

max}
3: w := Gd

m ◦ . . . ◦G1
m(w)

4: σ := ∥w∥
5: w := w/σ
6: Check convergence (on σ)
7: end loop

8: Set wm := σw

Algorithm 1 involves the application of successive maps Gk
m : R1 → R1, for

k = 1, . . . , d. The application of map Gk
m to an element w = ⊗d

k=1w
k ∈ R1

consists in modifying the vector wk ∈ Vk by minimizing ∥u − um−1 − ⊗d
l=1w

l∥
with respect to wk, letting �xed the other vectors wl, for l ̸= k. The map can
be de�ned as follows:

z = Gk
m(w) ⇔ ∥u− um−1 − z∥2 = min

z∈Rk
1 (w)

∥u− um−1 − z∥2

where for w = ⊗d
k=1w

k, Rk
1(w) is de�ned by

Rk
1(w) = {w1 ⊗ . . .⊗ vk ⊗ . . .⊗ wd; vk ∈ Vk} ⊂ R1, (10)

For w ̸= 0, Rk
1(w) is a closed linear subspace of rank-1 tensors, such that

the minimization on Rk
1(w) is always well-posed and admits a unique solution.

Therefore, the map Gk
m is well de�ned. z = Gk

m(w) is equivalently characterized
by

z ∈ Rk
1(w), (z, v) = (u− um−1, v) ∀v ∈ Rk

1(w)

Denoting z = w1 ⊗ . . . ⊗ zk ⊗ . . . ⊗ wd, the previous equation is formulated as
a problem on zk ∈ Vk:

(zk, vk)k

d∏
l=1,l ̸=k

∥wl∥2l = (u− um−1, w
1 ⊗ . . .⊗ vk ⊗ . . .⊗ wd) ∀vk ∈ Vk

from which we deduce the expression of zk :

zk = {u− um−1, w}∗k
d∏

l=1,l ̸=k

∥wl∥−2
l

where for v ∈ V and w ∈ R1, {v, w}∗k ∈ Vk is de�ned by

({v, w}∗k, vk)k = (v, w1 ⊗ . . .⊗ vk ⊗ . . .⊗ wd) ∀vk ∈ Vk (11)
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Finally, the map Gk
m can be simply de�ned as follows:

Gk
m(w) = w1 ⊗ . . .⊗ gkm(w)⊗ . . .⊗ wd,

with

gkm(w) = {u− um−1, w}∗k
d∏

l=1,l ̸=k

∥wl∥−2
l

Remark 3.7. Algoritm 1 can be interpreted as a multidimensional extension
of a power method for capturing the dominant singular value of a tensor and an
associated rank-one tensor (called singular vector), de�ned by (7). In the case
d = 2, it exactly coincides with a classical power method yielding the dominant
singular value and vector de�ned in Remark 3.4. For d > 2, this algorithm has
already been introduced in multilinear algebra, where it is called Higher Order
Power Method [8].

Algorithm for rank-m approximation. We now propose the following algorithm
for the construction of a rank-m tensor product approximation, introduced in
De�nition 3.6. This algorithm corresponds to a progressive construction with
Nup updates along selected directions D ⊂ {1, . . . , d}. Let us note that with
Nup = 0, this algorithm allows the construction of the purely progressive MSVD
introduced in De�nition 3.2.

Algorithm 2 (Progressive construction with updates).

1: Set u0 := 0
2: for i = 1 to m do

3: Compute wi ∈ R1 with Algorithm 1
4: Set ui := ui−1 + wi

5: loop {Nup times}
6: ui := FD

i (ui)
7: end loop

8: end for

We recall that FD
m = F d1

m ◦ . . . ◦ F d#D
m . Let us now detail for a given k ∈ D the

application of the map F k
m, de�ned by (9). Let um =

∑m
i=1 w

1
i ⊗ . . .⊗wd

i . Since
Rk

m(um) is a linear subspace, zm = F k
m(um) is characterized by

zm ∈ Rk
m(um), (zm, vm) = (u, vm) ∀vm ∈ Rk

m(um)

Let us denote zm =
∑m

i=1 w
1
i ⊗ . . . ⊗ zki ⊗ . . . ⊗ wd

i , with zki ∈ Vk. The pre-
vious equation yields the following characterization of the unknown functions
{zki }mi=1 ∈ (Vk)

m:

m∑
i,j=1

αij(z
k
j , v

k
i )k =

m∑
i=1

({u,wi}∗k, vki )k ∀vk1 , . . . , vkm ∈ Vk,

11



with αij =
∏d

l=1,l ̸=k(w
l
i, w

l
j)l. Denoting β ∈ Rm×m the inverse of matrix α =

(αij) ∈ Rm×m, we have

zki =
m∑
j=1

βij{u,wj}∗k := fk
i,m(um) ∀i ∈ {1, . . . ,m}

We then have the following expression of map F k
m:

F k
m(um) =

m∑
i=1

w1
i ⊗ . . .⊗ fk

i,m(um)⊗ . . .⊗ wd
i

Let us note that if we have a complete orthogonality between rank-one elements,
i.e. wi ⊥c wj , then α is a diagonal matrix and the map is well de�ned. For
general non orthogonal elements, a degeneracy of the linear space Rk

m(um) may
occur, which leads to a singular (or ill-conditioned) matrix α. When such a
degeneracy occurs, the update along dimension k is omitted, letting F k

m(um) =
um.

4. Constrained multidimensional tensor product approximation

In this section, we propose a modi�cation of tensor product approximations
proposed in section 3 in order to satisfy some desired constraints. The aim
is to impose to �nite-rank approximations um of u to stay in an admissible
set of tensors K ⊂ V that verify the constraints. In this paper, we propose
to enforce the constraints with a penalty method and therefore, the constraints
will be veri�ed approximately. We restrict the presentation and the convergence
results to the practical case of �nite dimensional Hilbert spaces. Under more
general assumptions, and following [24], the proposed de�nitions of constrained
approximation could be extended to in�nite dimensional Hilbert spaces.

Remark 4.1. When the function u to be approximated veri�es the constraints,
i.e. u ∈ K, the proposed de�nitions allows to construct a sequence um which
converges to u. A less natural situation which could however be of practical
interest, is when u /∈ K. In this case, the proposed de�nitions allows to construct
a sequence um which converges to the best approximation of u in K. Both cases
are considered in a unique framework.

4.1. Set of admissible elements and penalty method

Let us consider that K ⊂ V is a closed subset of elements which verify some
desired constraints. We introduce a functional j : V → R+ such that{

j(v) = 0 if v ∈ K

j(v) > 0 if v /∈ K

Assumption 4.2. Functional j : V → R+ is chosen such that:

12



(i) j is convex and coercive (j(v) → ∞ as ∥v∥ → ∞)

(ii) j is Fréchet di�erentiable, with continuous Fréchet di�erential j′ : V → V .

We now introduce a penalty functional jϵ : V → R+ de�ned by

jϵ(v) = ϵj(v)

with ϵ > 0 a penalty parameter, and we introduce a functional Jϵ : V → R
de�ned by

Jϵ(v) =
1

2
∥u− v∥2 + jϵ(v) (12)

A suitable subset A ⊂ V being given, a best approximation uA
ϵ ∈ A of u ∈ V

which veri�es approximately the constraints can then be de�ned by the opti-
mization problem

Jϵ(u
A
ϵ ) = min

v∈A
Jϵ(v) (13)

Let us note that for ϵ = 0, uA
0 is the classical best approximation of u in A,

with respect to norm ∥ · ∥. Letting ϵ → ∞, jϵ tends towards the characteristic
function of the set K and, under suitable assumptions on A, uA

ϵ tends to the
solution uA

∞ of

∥u− uA
∞∥2 = min

v∈A∩K
∥u− v∥2 (14)

Increasing ϵ leads to a better veri�cation of the constraints. We have the fol-
lowing properties of functional Jϵ.

Lemma 4.3. Functional Jϵ : V → R de�ned in (12) veri�es

(i) Jϵ is positive, strictly convex and coercive

(ii) Jϵ is continuous and Fréchet di�erentiable with continuous Fréchet di�er-
ential J ′

ϵ : V → V de�ned by

(J ′
ϵ(v), w) = (v − u,w) + (j′ϵ(v), w) ∀w ∈ V

Proof. We have Jϵ(v) = J0(v) + jϵ(v), with J0(v) = 1
2∥u − v∥2. In a �nite

dimensional Hilbert space V , J0 is a continuous coercive and strictly convex
function. Jϵ is then the sum of a convex coercive and positive functional jϵ
and of a strictly convex positive and coercive functional J0. Therefore, Jϵ is
strictly convex, coercive and positive, which proves (i). Next, as a sum of two
Fréchet di�erentiable functionals, Jϵ is Fréchet di�erentiable. The continuity of
J ′
ϵ follows from the assumed continuity of j′ϵ. That proves (ii). �

We now recall a classical result in optimization [1] which guaranties the well-
posedness of minimization problem (13).
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Lemma 4.4. Let A be a closed subset of a �nite dimensional Hilbert space V
and let J : V → R. If J is a convex continuous and coercive functional, it
admits a minimizer on A. Moreover, if J is strictly convex, the minimizer is
unique.

We have the following result which characterizes the minimizer of Jϵ in Hilbert
space V .

Proposition 4.5. The problem

Jϵ(uϵ) = min
v∈V

Jϵ(v) (15)

admits a unique solution uϵ ∈ V , equivalently characterized by

(J ′
ϵ(uϵ), v) = (uϵ − u, v) + (j′ϵ(uϵ), v) = 0 ∀v ∈ V (16)

If u ∈ K or if ϵ = 0, we have uϵ = u.

Proof. The existence of a unique minimizer uϵ in the vector space V follows
from properties of functional Jϵ given in Lemma 4.3 and from Lemma 4.4 with
an optimization set A = V , i.e. the entire Hilbert space. Equation (16) is the
classical Euler-Lagrange equation which characterizes the minimizer uϵ. Finally,
if u ∈ K, we have Jϵ(u) = 0 and since Jϵ(v) > 0 for all v ̸= u, we have that u is
the unique minimizer. ϵ = 0 corresponds to the case without the penalty term.
It is then a trivial best approximation problem with respect to norm ∥ ·∥, which
admits as a unique solution the function u itself. �

4.2. Constrained tensor product approximations

Optimal constrained tensor product approximations um could be de�ned by

Jϵ(um) = min
vm∈Sm

Jϵ(vm) (17)

with a suitable choice of �nite rank tensors sets Sm ensuring the existence of a
minimizer. In particular, the di�erent choices of section 3.1 could be adopted
and yield di�erent constrained tensor product approximations. Dedicated algo-
rithms should then be derived for their construction. Here, we propose de�ni-
tions of constrained �nite rank approximations based on the progressive con-
struction of optimal rank-one tensors, with eventual updates of the previously
computed vectors. The de�nitions are natural extensions of de�nitions of section
3.2, with a modi�cation of the functional to minimize.

4.2.1. Purely progressive construction

We �rst propose a purely progressive construction of the tensor product
approximation.

De�nition 4.6 (CϵMSVD). We de�ne the purely progressive constrained mul-
tidimensional singular value decomposition of a tensor u ∈ V as the sequence
um =

∑m
i=1 wi ∈ Rm de�ned progressively by

Jϵ(um−1 + wm) = min
w∈R1

Jϵ(um−1 + w) (18)
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The minimization problem (18) can also be written Jϵ(um) = minvm∈Sm
Jϵ(vm)

with Sm = um−1 + R1. From Lemma 2.2, we have that Sm is a closed set.
Therefore, from Lemma 4.4 and properties of Jϵ, this minimization problem
admits a solution and a sequence {um}m∈N exists. The convergence of this
sequence is proved in section 4.3.

4.2.2. Progressive construction with eventual updates

Following the construction of section 3.2.2, we now propose to include some
updates in the previous progressive construction. We denote byD = {d1, . . . , d#D}
a set of dimensions. For a given dimension k ∈ D, we de�ne the map F k

m : um ∈
Rm 7→ F k

m(um) ∈ Rk
m(um), with Rk

m(um) ⊂ Rm de�ned by (8) and

zm = F k
m(um) ⇔ Jϵ(zm) = min

vm∈Rk
m(um)

Jϵ(vm) (19)

Such as in section 3.2.2, if for a given k ∈ D and a given um ∈ Rm, the set
Rk

m(um) is not a closed linear space, F k
m(um) is not de�ned and we simply

let F k
m(um) = um (no update performed). Next, we de�ne the updating map

FD
m : Rm → Rm as the composition of the maps {F k

m}k∈D:

FD
m = F d1

m ◦ . . . ◦ F d#D
m (20)

We now introduce the following de�nition.

De�nition 4.7 (Updated CϵMSVD). For an element u ∈ V , the updated
progressive constrained multidimensional singular value decomposition is de�ned
as a sequence of rank-m approximations um ∈ Rm de�ned progressively as fol-
lows: for um−1 =

∑m−1
i=1 wi given, we de�ne u⋄

m ∈ um−1 +R1 by

Jϵ(u
⋄
m) = min

w∈R1

Jϵ(um−1 + w) (21)

and we de�ne um by applying Nup times the updates along a set of dimensions
D:

um = FD
m ◦ . . . ◦ FD

m︸ ︷︷ ︸
Nup times

(u⋄
m)

The convergence of the sequence {um}m∈N is proved in the following section
4.3.

Remark 4.8. Let us note that for ϵ = 0, De�nition 4.7 (resp. 4.6) coincides
with the De�nition 3.6 (resp. 3.2) of the unconstrained multidimensional sin-
gular value decomposition.

4.3. Convergence result

Here, we give a convergence proof of the updated progressive tensor product
approximation with constraints {um}m∈N de�ned in De�nition 4.7. The con-
vergence of the purely progressive construction of De�nition 4.6 is obtained as
a corollary since it is a particular case of the updated progressive construction
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(with Nup = 0). Let us also note that a convergence result for unconstrained de-
compositions (De�nitions 3.2 and 3.6) is obtained as a corollary of the present
result since unconstrained decompositions are particular cases of constrained
decompositions, with ϵ = 0 (see remark 4.8). For the de�nition of the sequence
{um}m∈N, De�nition 4.7 introduce an auxiliary sequence u⋄

m. In the case where
no update is performed, we let um = u⋄

m.

Theorem 4.9 (Convergence). The sequence {um}m∈N, de�ned in De�nition
4.7, converges towards the unique minimizer uϵ of Jϵ de�ned in Proposition 4.5:

∥uϵ − um∥ −−−−→
m→∞

0

Proof. {Jϵ(um)}m≥1 is a non-increasing sequence. Indeed, by de�nition,

Jϵ(um) ≤ Jϵ(u
⋄
m) = Jϵ(um−1 + wm) ≤ Jϵ(um−1 + w) ∀w ∈ R1

and in particular, we have Jϵ(um) ≤ Jϵ(um−1). If there exists m such that
Jϵ(um) = Jϵ(um−1), we have Jϵ(um−1) = minw∈R1 Jϵ(um−1+w), and by Lemma
4.10, we have that um−1 = uϵ, which ends the proof. Let us now suppose that
Jϵ(um) < Jϵ(um−1) for all m. Jϵ(um) is then a strictly decreasing sequence
which is bounded below by Jϵ(uϵ). Therefore, there exists

J∗ = lim
m→∞

Jϵ(um) ≥ Jϵ(uϵ) > −∞.

Since Jϵ is coercive, the sequence {um}m∈N is bounded in V . Then, from
any subsequence of the initial sequence, we can extract a further subsequence
{umk

}k∈N that converges to some u∗ ∈ V . Since Jϵ is continuous, we have

Jϵ(u
∗) = lim

k→∞
Jϵ(umk

) = J∗

By de�nition of the sequence {um}m∈N, we have

Jϵ(um(k+1)
) ≤ Jϵ(umk+1) ≤ Jϵ(umk

+ w)

for all w ∈ R1. Taking the limit with k and by continuity of Jϵ, we then obtain

Jϵ(u
∗) ≤ Jϵ(u

∗ + w) ∀w ∈ R1,

Lemma 4.10 then implies that u∗ is equal to the minimizer uϵ of Jϵ. We then
have that from any subsequence of the initial sequence, we can extract a further
subsequence that converges to uϵ. It implies that the whole sequence {um}m∈N
converges to uϵ and by the continuity of Jϵ, we have

lim
m→∞

Jϵ(um) = Jϵ(uϵ)

Using the property (24) of Jϵ in Lemma 4.11, we obtain

Jϵ(um)− Jϵ(uϵ) ≥ (J ′
ϵ(uϵ), um − uϵ) +

1

2
∥uϵ − um∥2 =

1

2
∥uϵ − um∥2, (22)
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where we have used J ′
ϵ(uϵ) = 0. We then obtain

lim
m→∞

1

2
∥uϵ − um∥2 ≤ lim

m→∞
Jϵ(um)− Jϵ(uϵ) = 0,

which ends the proof. �
Lemma 4.10. Let u∗ ∈ V satisfying

Jϵ(u
∗) = min

w∈R1

Jϵ(u
∗ + w). (23)

Then u∗ is the unique minimizer uϵ of Jϵ on V de�ned in Proposition 4.5.

Proof. For all γ ∈ R+ and w ∈ R1,

Jϵ(u
∗ + γw) ≥ Jϵ(u

∗)

and therefore

(J ′
ϵ(u

∗), w) = lim
γ→0+

1

γ
(Jϵ(u

∗ + γw)− Jϵ(u
∗)) ≥ 0

Since −R1 = R1, we obtain

(J ′
ϵ(u

∗), w) = 0 ∀w ∈ R1,

and since span(R1) = V , we obtain2

(J ′
ϵ(u

∗), v) = 0 ∀v ∈ V,

and the lemma follows from Proposition 4.5. �
Lemma 4.11. Functional Jϵ veri�es the following property: for all v, w ∈ V ,

Jϵ(v)− Jϵ(w) ≥ (J ′
ϵ(w), v − w) +

1

2
∥v − w∥2 (24)

Proof.

Jϵ(v)− Jϵ(w) =
1

2
∥u− v∥2 − 1

2
∥u− w∥2 + jϵ(v)− jϵ(w)

≥ 1

2
∥u− v∥2 − 1

2
∥u− w∥2 + (j′ϵ(w), v − w) (by convexity of jϵ)

=
1

2
(v, v)− 1

2
(w,w)− (u, v − w) + (j′ϵ(w), v − w)

=
1

2
(v, v)− 1

2
(w,w)− (w, v − w) + (w − u, v − w) + (j′ϵ(w), v − w)

=
1

2
∥v − w∥2 + (J ′

ϵ(w), v − w)

Let us note that this last property could have been classically deduced from the
strong convexity property of Jϵ:

(J ′
ϵ(v)− J ′

ϵ(w), v − w) ≥ ∥v − w∥2

�

2In the in�nite dimensional case, we have span(R1) dense in V .
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4.4. Algorithm

Alternated direction algorithm for minimization in R1. For a given um−1, an
optimal rank-one element wm ∈ R1, de�ned by (18), can be constructed with
Alternated Direction Algorithm 1 where for k ∈ {1, . . . , d}, the map Gk

m : R1 →
R1 is de�ned as follows:

z = Gk
m(w) ⇔ Jϵ(um−1 + z) = min

z∈Rk
1 (w)

Jϵ(um−1 + z)

where for w = ⊗d
k=1w

k, the linear subspace Rk
1(w) ⊂ R1 is de�ned by (10). For

w ̸= 0, Rk
1(w) is a closed linear subspace, such that the minimization of Jϵ on

Rk
1(w) is well-posed and admits a unique solution. Therefore, the map Gk

m is
well de�ned. z = Gk

m(w) ∈ Rk
1(w) is characterized by

(J ′
ϵ(um−1 + z), v) = 0 ∀v ∈ Rk

1(w)

or equivalently by

(z, v) + (j′ϵ(um−1 + z), v) = (u− um−1, v) ∀v ∈ Rk
1(w)

Denoting z = w1 ⊗ . . .⊗ zk ⊗ . . .⊗wd, the previous equation yields an equation
on zk ∈ Vk:

αzk +B(zk) = {u− um−1, w}∗k (25)

where α =
∏d

l=1,l ̸=k ∥wl∥2l , where {·, ·}∗k ∈ Vk is de�ned by (11) and where
B : Vk → Vk is a nonlinear map de�ned by

B(zk) = {j′ϵ(um−1 + w1 ⊗ . . .⊗ zk ⊗ . . .⊗ wd), w}∗k

Nonlinear map B, as the di�erential of a convex functional, is a monotone map.
Equation (25) is a nonlinear equation which admits a unique solution.

Remark 4.12. In practice, if we further assume the di�erentiability of j′ϵ, and
therefore of the map B, we can use a Newton iteration solver for the solution
of (25).

Algorithm for rank-m approximation. For the construction of a rank-m tensor
product approximation, de�ned in De�nition 4.7, we use Algorithm 2. With
Nup = 0, this algorithm allows the construction of the purely progressive de-
composition introduced in De�nition 4.6. Mapping FD

m is de�ned in (20) as the
composition of maps F k

m, de�ned in (19). Let us detail the application of map
F k
m for a given k ∈ D. Let um =

∑m
i=1 wi =

∑m
i=1 w

1
i ⊗ . . .⊗wd

i . Since Rk
m(um)

is a linear subspace, zm = F k
m(um) is characterized by

zm ∈ Rk
m(um), (zm, vm) + (j′ϵ(zm), vm) = (u, vm) ∀vm ∈ Rk

m(um)
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Let us denote zm =
∑m

i=1 w
1
i ⊗ . . .⊗ zki ⊗ . . .⊗wd

i , with zki ∈ Vk. The previous
equation is equivalent to the following system of nonlinear equations de�ning
the unknown functions {zki }mi=1 ∈ (Vk)

m:

m∑
j=1

αijz
k
j +Bi(z

k
1 , . . . , z

k
m) = {u,wi}∗k (26)

where αij =
∏d

l=1,l ̸=k(w
l
i, w

l
j)l and where Bi : (Vk)

m → Vk is a nonlinear map
de�ned by

Bi(z
k
1 , . . . , z

k
m) =

j′ϵ(
m∑
j=1

w1
j ⊗ . . .⊗ zkj ⊗ . . .⊗ wd

j ), wi


∗k

Remark 4.13. In practice, if we further assume the di�erentiability of j′ϵ, and
therefore of the maps Bi, we can use a Newton iteration solver for the solution
of (26).

5. Application to the construction of bounded tensor product approx-
imations

We here introduce the application of interest mentioned in the introduction,
for imposing bounds on tensor product approximations.

5.1. A continuous point of view

Let V be a space of functions u : Ω → R de�ned on a cartesian domain
Ω = Ω1 × . . .×Ωd. Let us denote by K the admissible set of functions, de�ned
by

K = {v ∈ V ; a(x) ≤ v(x) ≤ b(x), x ∈ Ω} (27)

We can introduce the convex functional

j(v) =

∫
Ω

f(v(x);x)dx (28)

with f(·;x) : R → R a convex and continuously di�erentiable function de�ned
by

f(y;x) = [a(x)− y]2+ + [y − b(x)]2+ (29)

where [y]+ = max{0, y} denotes the positive part of y. We have j(v) = 0 for
v ∈ K and j(v) > 0 for v /∈ K. Letting ϵ → ∞, jϵ = ϵj tends towards the
indicator function of K. Let us note that f is chosen such that j is two times
di�erentiable, which allows the derivation of speci�c algorithms for the solution
of optimization problem (e.g. Newton solver) associated with the construction
of the constrained tensor product approximation.
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Remark 5.1. If the constraint has to be imposed only on a subdomain Ω̃ ⊂ Ω,
we de�ne the set of admissible functions

K = {v ∈ V ; a(x) ≤ v(x) ≤ b(x), x ∈ Ω̃ ⊂ Ω} (30)

and we can simply modify the functional f as follows

f(y;x) = ([a(x)− y]2+ + [y − b(x)]2+)IΩ̃(x), (31)

where IΩ̃(x) = 1 if x ∈ Ω̃ and IΩ̃(x) = 0 if x /∈ Ω̃. If we want to impose only an
upper or a lower bound, we can choose:

• K = {u; a(x) ≤ u(x), x ∈ Ω̃ ⊂ Ω} and f(y;x) = [a(x)− y]2+IΩ̃(x)

• K = {u;u(x) ≤ b(x), x ∈ Ω̃ ⊂ Ω} and f(y;x) = [y − b(x)]2+IΩ̃(x)

In practice, the above problem will be discretized and recasted in an algebraic
form, with V = Rn1×...×nd . A tensor u ∈ V is written u =

∑
l∈L ulel, using

the notations of section 2.2. In the previous context of functions de�ned on a
domain Ω, the components ul can represent the value of the function at some
interpolation points {xl}l∈L of a grid contained in domain Ω. The problem is
then reformulated in an algebraic setting as follows.

5.2. Algebraic setting

We consider V = Rn1×...×nd ≃ Rn1 ⊗ . . . ⊗ Rnd . A tensor u ∈ V is written
u =

∑
l∈L ulel, with the notations of section 2.2. We consider the set K of

admissible tensors:

K = {u ∈ V ; al ≤ ul ≤ bl, l ∈ L} (32)

where a, b ∈ V . Functional j can be chosen as follows

j(v) =
∑
l∈L

f(ul; l) =

n1∑
l1=1

. . .

nd∑
ld=1

f(ul1,...,ld ; l1, . . . , ld)

where for l ∈ L, f(·; l) : R → R is de�ned by

f(y; l) = [al − y]2+ + [y − bl]
2
+ (33)

Remark 5.2. If we want to impose some bounds only on components ul with l
belonging to a subset of indices L̃ ⊂ L, we can use

f(y; l) = ([al − y]2+ + [y − bl]
2
+)IL̃(l), (34)

where IL̃ : L → {0, 1} is the indicator function of the set L̃ de�ned by IL̃(l) = 1

if l ∈ L̃ and 0 if l /∈ L̃.
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Functional j admits the di�erential j′ : V → V de�ned by

(j′(u), v) =
∑
l∈L

f ′(ul; l)vl

with
f ′(y; l) = −2[al − y]+ + 2[y − bl]+

Functional j′ admits a di�erential j′′ : V → (V → V ) de�ned for u, v, w ∈ V by

(j′′(u)(w), v) =
∑
l∈L

f ′′(ul; l)wlvl

with
f ′′(y; l) = 2H(al − y) + 2H(y − bl)

where H is the heaviside function.

5.3. Example: separated representation of the indicator function of a domain

We consider the indicator function I : (0, 1)3 → {0, 1} of the three-dimensional
domain O ⊂ (0, 1)3 plotted on �gure 1(a). We denote by ϕ : (0, 1)3 → R the
associated level-set function, whose iso-zero is the boundary ∂O. We then in-
troduce a smoothed version Ĩ of I de�ned by Ĩ = tanh(30ϕ), plotted in �gure
1(b). Finally, we introduce the tensor u ∈ Rn+1⊗Rn+1⊗Rn+1 representing the
values of Ĩ on a cartesian uniform grid in (0, 1)3, with uijk = Ĩ( i−1

n , j−1
n , k−1

n )
for 1 ≤ i, j, k ≤ n+1. We here want to �nd a separated representation um of u
which veri�es 0 ≤ um ≤ 1. Separated representations are computed with Algo-

(a) (b)

Figure 1: Domain O (a) and slices of its smoothed indicator function Ĩ

rithm 2 with a set of updated dimensions D = {1, 2, 3}. For the construction of
rank-1 elements, we use Algorithm 1 with a random initialization, Nalt

max = 20
and a convergence criterium of 10−2 (stagnation criterium on σ). In the case of
the constrained approximation, the applications of maps Gk

m and F k
m require the

solutions of nonlinear equations (25) and (26), which are solved with a relative
precision of 10−5 with a Newton solver.
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Unconstrained approximation. We �rst construct an unconstrained multidimen-
sional singular value decomposition (MSVD). Figure 2 shows the convergence
of um for di�erent numbers Nup of updates. We observe that performing one
update allows to signi�cantly improve the convergence. However, additional
updates does not bring a signi�cant further improvement. Figures 3 plots the
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Figure 2: In�uence of the number of updates Nup in MSVD

maximum and minimum values of um. We observe that um /∈ (0, 1), even for
high rank m.
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Figure 3: MSVD: minimum (left) and maximum (right) values of um forNup = 0 andNup = 1.

Figure 4 illustrates the obtained approximations um for di�erent rank m.
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(a) m = 10 (b) m = 20

(c) m = 50 (d) m = 100

Figure 4: MSVD: slices of um for di�erent m (Nup = 0).
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Constrained approximation. We now construct a constrained multidimensional
singular value decomposition (CϵMSVD). We consider di�erent values of the
penalization parameter ϵ ∈ {0, 10−3, 10−1, 101, 103}. We �rst consider the
CϵMSVD without updates. Figure 5 illustrates the convergence of associated
decompositions um, while Figure 6 plots the minimum and maximum values of
these decompositions. Figure 7 illustrates slices of decompositions um for di�er-
ent values of ϵ. We observe that when ϵ is increased, the convergence rate deteri-
orates but the constraint is better and better veri�ed. Note that with ϵ ≤ 10−1,
the obtained decomposition is very close to the unconstrained MSVD. We now
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Figure 5: CϵMSVD: Convergence of um for di�erent values of ϵ.
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Figure 6: CϵMSVD: Minimum (a) and Maximum (b) values of um for di�erent ϵ.

improve the constrained decomposition by performing one update (Nup = 1).
Figure 8 illustrates the convergence of this decomposition for ϵ = 103. Figure
9 illustrates the minimum and maximum values of constrained decompositions
associated with di�erent ϵ. Figure 10 illustrates slices of um for m = 40 and
ϵ = 103. Performing one update signi�cantly improved the accuracy for a given
rank of decomposition, while preserving the same precision on the veri�cation
of the constraint. With one update in the constrained decomposition associ-
ated with ϵ = 103, we are able to construct a separated representation having
the same accuracy than the unconstrained progressive separated representation,
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(a) ϵ = 10−1, m = 40 (b) ϵ = 101, m = 40

(c) ϵ = 103, m = 40 (d) ϵ = 105, m = 40

Figure 7: CϵMSVD : slices of um for di�erent values of penalization parameter ϵ.

with a very good veri�cation of the constraint.
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Figure 8: CϵMSVD with updates: convergence of um for ϵ = 103 and ϵ = 0 (unconstrained
decomposition). In�uence of updates.
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Figure 9: CϵMSVD with updates: Minimum (a) and Maximum (b) values of um for di�erent
ϵ, and Nup = 1.

(a) ϵ = 103, Nup = 0 (b) ϵ = 103, Nup = 1

Figure 10: CϵMSVD : slices of um for m = 40 and ϵ = 103 and for di�erent Nup.
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6. Conclusion

In this paper, we have proposed some de�nitions of tensor product approxi-
mations based on the progressive construction (eventually updated) of successive
best rank-one approximations. In particular, we have proposed new de�nitions
of constrained tensor product approximations based on penalty methods, which
allow to enforce some desired constraints on the obtained approximation. The
obtained decompositions can be interpreted as constrained multidimensional
singular value decomposition. A convergence proof of the tensor product ap-
proximations has been established under some natural assumptions on penalty
functionals. Heuristic alternated direction algorithms have been provided in
order to construct these decompositions. The method has been detailed for the
enforcing of bounds on the components of a tensor. The method has been vali-
dated on a numerical example.
The results of the present paper have illustrated the feasibility of imposing ap-
proximately some constraints on tensor product approximations. However, with
the proposed de�nitions, imposing accurately the constraints may yield a signif-
icant deterioration of the convergence properties of the decompositions. Further
works should be devoted to alternative de�nitions allowing to impose the con-
straints more accurately without a signi�cant deterioration of the convergence.
E�cient solution techniques should also be introduced in order to deal with
high dimensional tensors. Indeed, the proposed algorithms leads to relatively
high computational times for the computation of constrained decompositions.
In the case where the initial tensor is given in a separated form, the proposed
algorithms for the constrained decomposition uses a full representation of the
initial tensor. Therefore, it does not allow to deal with really high dimensional
tensor product spaces. In the case where we want to impose bounds on the ten-
sors components, speci�c algorithms should be introduced in order to perform
operations (e.g. positive part, heaviside) preserving the separated form.
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