
Numerical Strategies for the Galerkin-Proper
Generalized Decomposition Method

A. Falcóa, L. Hilarioa, N. Montésb, M. C. Morac

aDepartamento de Ciencias, F́ısicas, Matemáticas y de la Computación, Universidad CEU
Cardenal Herrera San Bartolomé 55 46115 Alfara del Patriarca (Valencia), Spain.

bDepartamento de Ingenieŕıa de la Edificación y Producción Industrial, Universidad CEU
Cardenal Herrera San Bartolomé 55 46115 Alfara del Patriarca (Valencia), Spain.

cDepartamento de Ingenieŕıa Mecánica y Construcción, Universitat Jaume I, Avd. Vicent
Sos Baynat s/n 12071 Castellón, Spain

Abstract

The Proper Generalized Decomposition or, in short, PGD is a tensor decompo-
sition based technique to solve PDE problems. It reduces calculation and stor-
age cost drastically and presents some similarities with the Proper Orthogonal
Decomposition, in short POD. In this work, we propose an efficient implemen-
tation to improve the convergence of the PGD, towards the numerical solution
of a discretized PDE problem, when the associated matrix is Laplacian-like.

Keywords: Numerical tensor calculus, Tensor Banach space, Proper
Generalized Decomposition, Laplacian-like matrix.

1. Introduction

The Proper Generalized Decomposition PGD appears as a natural exten-
sion of the Proper Orthogonal Decomposition POD. It is well-known that POD
framework is based in the SVD methodology. On the other hand, the SVD is
closely related, in finite dimension, with the Eckart-Young Theorem [12] and in
infinite dimension with the classical result of Schmidt [15]. Both results contain
one of the main ingredients of PGD framework: the existence of a best approx-
imation by using a tensor decomposition. It is important to point out, that
both results are true only for tensors of order two, because the milestone of the
proof is the existence of a best rank-n approximation for this class of tensor.
Unfortunately, in [11], it has been proved that tensors of order 3 or higher can
fail to have best rank-n approximation, that is, it is an ill-posed problem. In
consequence, as shown in [6] only rank-one approximations are available.

Recently, Falcó and Hackbusch [5] have proved the existence of a best ap-
proximation for tensor representations based in subspaces (see also [9]). This
fact allows to extend the PGD to other type of tensor decompositions.

Email addresses: afalco@uch.ceu.es (A. Falcó), luciah@uch.ceu.es (L. Hilario),
nimosam@uch.ceu.es (N. Montés), mmora@uji.es (M. C. Mora)

1Partially supported by PRCEU-UCH 30/10 by Universidad CEU Cardenal Herrera.

Preprint submitted to Elsevier October 31, 2011

There exists several approaches to the numerical analysis of PGD. Both
combine the existence of a best approximation and a greedy algorithm. The
idea of using greedy algorithms was introduced by Ammar, Mokdad, Chinesta
and Keunings [2], in the context of high-dimensional PDEs. It can be applied to
several problems including, among others, the stationary FokkerPlanck equation
of the FENE bead-spring chain model [13]. In Ammar, Mokdad, Chinesta and
Keunings [3], the approach is extended to time-dependent problems. One should
note, however, the method in [2] can be interpreted as a greedy algorithm for
solving elliptic problems associated with self-adjoint operators, because it is
equivalent to a minimization problem related with an energy functional (see Le
Bris, Lelièvre and Maday [4] for elliptic problems associated with self-adjoint
operators and for general elliptic ones, see Falcó and Nouy [6],). The extension
of the method to more general problems, like the non-stationary FokkerPlanck
equation, is done merely by analogy. In particular, its convergence, in general, is
not guaranteed (a recent result in this approach is given in the paper of Figueroa
and Süli [7]). A modification of the low-rank separation method, introduced in
Ammar, Chinesta and Falcó [1], where one minimizes on each iteration an L2

norm of the residual rather than a norm of the error. Such a method can be
linked with the greedy algorithms of DeVore and Temlyakov [10] for essentially
any PDE.

The main goal of this paper is to study the non-convex minimization prob-
lem included in the PGD algorithm. In particular we propose an efficient im-
plementation for a class of discreticed elliptic problems. The paper is organized
as follows. In the next section we introduce some preliminary definitions and
notation in order to explain the Galerkin-PGD method in a Hilbert tensor space
framework. Section 3 is devoted to the numerical strategies to solve the PGD
minimization problem for full-rank linear systems. Finally, in 4 we study an op-
timal implementation for the class of Laplacian-like matrices. Moreover, some
numerical examples are given.

2. The Galerkin-PGD method

Concerning the definition of the algebraic tensor space a

⊗d
j=1 Vj generated

from vector spaces Vj (1 ≤ j ≤ d), we refer to Greub [8]. As the underlying field

we choose R, but the results hold also for C. The suffix ‘a’ in a

⊗d
j=1 Vj refers

to the ‘algebraic’ nature. By definition, all elements of

V := a

d⊗
j=1

Vj

are finite linear combinations of elementary tensors v =
⊗d

j=1 vj (vj ∈ Vj) .
Next, we introduce the following class of Hilbert spaces.

Definition 2.1. We say that V‖·‖ is a Hilbert tensor space if there exists an
algebraic tensor space V and a norm ‖·‖ on V such that V‖·‖ is the completion
of V with respect a given norm ‖·‖, i.e.,

V‖·‖ := ‖·‖

d⊗
j=1

Vj = a

⊗d

j=1
Vj

‖·‖

.

2

The following notation and definitions, introduced in [5], will be useful. Let
I := {1, . . . , d} be the index set of the ‘spatial directions’. In the sequel, the
index sets I\{j} will appear. Here, we use the abbreviations

V[j] := a

⊗
k 6=j

Vk , where
⊗
k 6=j

means
⊗

k∈I\{j}

, (1)

Similarly, elementary tensors
⊗

k 6=j v
(j) are denoted by v[j].

Let V‖·‖ be a tensor Hilbert space, a : V‖·‖ ×V‖·‖ → R be a bilinear form,
and ϕ ∈ V∗‖·‖. We consider the problem

u ∈ V‖·‖, a(u,v) = ϕ(v) for all v ∈ V‖·‖. (2)

We assume that a(·, ·) is bounded,

|a(u,v)| ≤M‖u‖‖v‖ for all u,v ∈ V‖·‖, (3)

and V‖·‖-elliptic,

a(v,v) ≥ c0‖v‖2 for all v ∈ V‖·‖, (4)

for some positive constants M and c0. Classical Galerkin Method consists of
constructing an approximate solution in an N -dimensional subspace VN of the
tensor Hilbert space V‖·‖. Then we project problem (2) onto VN :

u ∈ VN , a(u,v) = ϕ(v) for all v ∈ VN . (5)

We introduce the operator A : V‖·‖ −→ V‖·‖ associated with a(·, ·), and defined
by

a(u,v) = 〈Au,v〉 (6)

for all u,v ∈ V‖·‖. We also introduce the element f ∈ V‖·‖ associated with `
and defined by

`(v) = 〈f ,v〉 (7)

for all v ∈ V‖·‖. The existence of A and f is ensured by the Riesz representation
theorem [14]. Problem (2) can be rewritten in an operator form:

Au = f (8)

We further assume the following property on A: for all v ∈ V‖·‖,

∃c > 0 such that ‖Av‖ ≥ c‖v‖ (9)

From properties of A and its adjoin A∗, A∗A is a self-adjoint continuous and V -
elliptic operator. It then defines an inner product on V‖·‖, denoted 〈·, ·〉A∗A :=
〈A·, A·〉, with associated norm ‖ · ‖A∗A which is equivalent to the norm ‖ · ‖.
Formulation (5) is equivalent to the following minimal residual formulation:

uN = arg min
v∈VN

‖f −Av‖2 = arg min
v∈VN

‖A−1f − v‖2A∗A (10)

The PGD-Galerkin Method is based in the fact that in a tensor Hilbert space
a typical representation format is the tensor subspace or Tucker format

u =
∑
i∈I

ai

d⊗
j=1

b
(j)
ij
, (11)

3

where I = I1 × . . .× Id is a multi-index set with Ij = {1, . . . , rj}, rj ≤ dim(Vj),

b
(j)
ij
∈ Vj (ij ∈ Ij) are basis vectors, and ai ∈ R. Here, ij are the components of

i = (i1, . . . , id). The data size is determined by the numbers rj collected in the
tuple r := (r1, . . . , rd). The set of all tensors representable by (11) with fixed r
is

Tr(V) :=

{
v ∈ V :

there are subspaces Uj ⊂ Vj such that

dim(Uj) = rj and v ∈ U := a

⊗d
j=1 Uj .

}
(12)

Here, it is important that the description (11) with the vectors b
(j)
i can be

replaced by the generated subspace Uj = span{b(j)i : i ∈ Ij}. Note that Tr is
neither a subspace of V nor a convex set. However, span Tr(V) is dense in V,
for all ri ≥ 1 where 1 ≤ i ≤ d, and hence in V‖·‖.

In [5] some conditions are given in order to show that Tr(V) is weakly closed
in V‖·‖. Under this assumption every element in V‖·‖ has a best approximation
in Tr(V). Then the PGD-Galerkin method appears as follows:

ur ∈ arg min
v∈Tr(V)

‖f −Av‖2 = arg min
v∈Tr(V)

‖A−1f − v‖2A∗A. (13)

Then in a similar way that in Theorem 14 in [6] it can be shown the following
result.

Theorem 2.2. Let V‖·‖ be a tensor Hilbert space, a : V‖·‖ × V‖·‖ → R be
a bilinear form bounded and V‖·‖-elliptic, and ϕ ∈ V∗‖·‖. Assume that A :

V‖·‖ −→ V‖·‖ defined by (6) satisfies (9) and Tr(V) is weakly closed in V‖·‖.

Let u
(0)
r = 0, and for each n ≥ 1 take

en−1 = f −Au(n−1)
r , (14)

compute w(n) ∈ arg min
v∈Tr(V)

‖en−1 −Av‖, (15)

u(n)
r = u(n−1)

r + w(n), (16)

update n. (17)

Then
lim
n→∞

u(n)
r = u = arg min

v∈V‖·‖
‖f −Av‖.

3. Strategies to solve the minimization problem (15)

From now on, we will concentrate our efforts to solve numerically the non-
convex minimization problem (15). To this end we introduce the following

notation. For each m = (m1, . . . ,md) ∈ Nd we define `(m) :=
∏d

j=1mj and

|m| :=
∑d

j=1mj .

Since in real life problems we usually work in a tensor space a

⊗d
j=1 Rmj =

R`(m), for example by using a Finite Element o Finite Difference method, we
identify a tensor u ∈ a

⊗d
j=1 Rmj with a vector u ∈ R`(m). Then given a full-

rank matrix A ∈ R`(m)×`(m) and b ∈ R`(m), we would to compute the solution

4

A−1b, of the linear system Au = b, by using (14)-(17). The most simple case is
to consider r = 1 := (1, . . . , 1), that is, the set of rank-one tensors

T1


a

d⊗
j=1

Rmj

 =


d⊗

j=1

vj : vj ∈ Rmj


where

⊗
denotes the Kronecker product. Thus, at the end of n-iteration in

(14)-(17) we have a vector

u(n)r =

n∑
k=1

d⊗
j=1

c
(k)
j .

From Theorem 2.2 we obtain that u
(n)
r → A−1b as n→∞.

In order to solve the minimization problem (15) we use (13), and in conse-
quence we consider the map

J : Rm1 × · · · × Rmk −→ R+

defined by

J (x1, . . . , xd) :=
1

2

(
⊗d

j=1x
T
j

)
ATA

(
⊗d

j=1xj
)
−⊗d

j=1x
T
j A

T b.

We point out that

J (x1, . . . , xd) =
1

2

∣∣A−1b−⊗d
j=1xj

∣∣2
ATA

− 1

2
|A−1b|2ATA,

where | · |A denotes the norm induced by the inner product over R`(m) defined
by 〈u, v〉ATA := uTATAv.

Remark 3.1. If A is a full-rank symmetric matrix, that is AT = A, then the
we use the map

J (x1, . . . , xd) :=
1

2

(
⊗d

j=1x
T
j

)
A
(
⊗d

j=1xj
)
−⊗d

j=1x
T
j b,

and

J (x1, . . . , xd) =
1

2

∣∣A−1b−⊗d
j=1xj

∣∣2
A
− 1

2
|A−1b|2A.

A first approach to compute a minimum, perhaps local, for the map J ,
is the well-known Alternating Least Squares ALS strategy, based in the Block
Coordinated Descent Method given in Algorithm 1.

The next statement gives the conditions for the convergence of Algorithm 1
to a stationary point of the map J .

Theorem 3.2. Let b ∈ R`(m) and A ∈ R`(m)×`(m), be an invertible matrix.
Assume that for each k ∈ {1, 2, . . . , d} the `(m)×mk-matrix Zk = A

(
idk ⊗ x[k]

)
(respectively, the mk ×mk-matrix

Zk =
(
idk ⊗ x[k]

)T
A
(
idk ⊗ x[k]

)
5

Algorithm 1 A Block Coordinated Descent Algorithm

1: Given J : R|m| → R
2: Initialize x

(0)
i ∈ Rri for i = 1, 2 . . . , d.

3: for n = 1, 2, . . . , do
4: for k = 1, 2, . . . , d do

5: x
(n)
k ∈ arg minxk∈Rrk J (x

(n)
1 , . . . , x

(n)
k−1, xk, x

(n−1)
k+1 , . . . , x

(n−1)
d)

6: end for
7: end for

if A = AT) has linearly independent columns for every (x1, . . . ,xd) ∈ R|m|
satisfying ∣∣A−1b−⊗d

j=1xj
∣∣
Z
≤
∣∣∣A−1b−⊗d

j=1x
(0)
j

∣∣∣
Z
, (18)

where Z = ATA (respectively, Z = A if A = AT). Then every accumulation
point (x∗1, . . . , x

∗
d) of the sequence{(

x
(n)
1 , . . . , x

(n)
d

)}∞
n=0

,

generated by Algorithm 1 satisfies the equation ∇J (x∗1, . . . ,x
∗
d) = 0. Moreover,

assume that
{x1, . . . , xk−1, xk+1, . . . , xd},

are fixed for some k ∈ {1, 2, . . . , d}, then xk = (ZT
k Zk)−1ZT

k b (respectively,
xk = Z−1k b if A = AT), is the global minimum of the directional minimization
problem

min
x∈Rmk

J (x1, . . . , xk−1, x, , xk+1, . . . , xd). (19)

Proof. We prove the theorem for a general full-rank matrix A, the proof for a
symmetric matrix is quite similar. The first part of the theorem follows in a
similar way as the first part of Theorem 2 in [1]. To prove the second one, observe
that the map from Rmk to R given by x→ J (x1, . . . , xk−1, x, , xk+1, . . . , xd) is
convex. Thus, to conclude the proof we need to show that

Dxk
J (x1, . . . , xk−1, (Z

T
k Zk)−1ZT

k b, xk+1, . . . , xd) = 0.

To this end, we claim that for all (y1, . . . , yd) ∈ R|r|,

d

dt
J ((x1 + ty1, . . . , xd + tyd))

∣∣∣∣
t=0

=

d∑
k=1

yTkDxk
J (x)T , (20)

where x = ⊗d
j=1xj , is equal to

d∑
k=1

yTk
(
(idk ⊗ x[k])

TAT b− (idk ⊗ x[k])
TATA⊗d

j=1 xj
)
. (21)

Recall thatDJ (x) = [Dx1
J (x) · · · Dxd

J (x)] ∈ R1×|m| and∇J (x) = DJ (x)T .
To prove the claim we write

J ((x1 + ty1, . . . , xd + tyd)) =
1

2
bT b− (x + ty)TAT b+

1

2
(x + ty)TATA(x + ty),

6

where x + ty := ⊗d
j=1(xj + tyj). Then

dJ
dt

= −
d∑

k=1

(
yk ⊗ (x[k] + ty[k])

)T
AT b+

d∑
k=1

(
yk ⊗ (x[k] + ty[k])

)T
ATA(x+ ty),

here x[k] + ty[k] :=
⊗

j 6=k(xj + tyj). Now, by taking t = 0, we have that (20) is
equivalent to

d∑
k=1

(
yk ⊗ x[k]

)T
AT b−

d∑
k=1

(
yk ⊗ x[k]

)T
ATA⊗d

j=1 xj .

Since,
(
yk ⊗ x[k]

)
=
(
idk ⊗ x[k]

)
yk for k = 1, . . . , d the claim follows. Thus

Dxk
J (x)T =

(
idk ⊗ x[k]

)T
AT b−

(
idk ⊗ x[k]

)T
ATA

(
idk ⊗ x[k]

)
xk.

for 1 ≤ k ≤ d, and the second part of the theorem follows.

Remark 3.3. In practice we compute idk ⊗ x[k] as

x1 ⊗ · · · ⊗ xk−1 ⊗ Imk
⊗ xk+1 · · · ⊗ xd

where ⊗ denotes the Kronecker product and Imk
the identity matrix in Rmk×mk .

4. On the implementation of (15) for Laplacian-like matrices

In this section we now assume that A ∈ R`(m)×`(m), where m ∈ Nd, is a
Laplacian-like matrix. Thus, we introduce the following definition.

Definition 4.1. We say that a full-rank matrix A ∈ R`(m)×`(m), is Laplacian-

like, if there exist r ≥ 1 and A
(i)
j ∈ Rmj×mj for 1 ≤ j ≤ d and 1 ≤ i ≤ r such

that

A =

r∑
i=1

d⊗
j=1

A
(i)
j .

A first property is the following.

Lemma 4.2. If A ∈ R`(m)×`(m) is a Laplacian-like matrix, then ATA is also
Laplacian-like.

Proof. Since

ATA =

r∑
l=1

r∑
i=1

d⊗
j=1

(A
(l)
j)TA

(i)
j ,

the lemma follows.
From Theorem 2.2 to compute an approximate solution of (15) we need to

solve iteratively a linear system

ZT
k Zkxk = (idk ⊗ x[k])

T b, (22)

7

where Zk = A(idk ⊗ x[k]) and 1 ≤ k ≤ d. A first approach introduced in
Corollary 1 of [1], proposes to compute previously the matrix Zk as

r∑
i=1

(
A

(i)
1 x1 ⊗ · · · ⊗A(i)

k−1xk−1 ⊗ Imk
⊗A(i)

k+1xk+1 · · · ⊗A(i)
d xd

)
, (23)

and then solve (22). It is not difficult to see that if mi = m for 1 ≤ i ≤ d then
the number of elementary operations to construct Zk by using (23) is O(md).

We remark that if A is a Laplacian-like matrix, from Lemma 4.2, we may
assume, without loss of generality, that A is a symmetric definite positive matrix
(replacing A by ATA). In consequence, the sequence constructed with the PGD
algorithm (14)-(17), where in (15) we replace |b−Av|2 by |A−1b−v|A, converges
in the | · |A-norm to A−1b. Thus we can use Algorithm 2 replacing in 7: ATA
by A and AT b by b. In this case we need to solve iteratively the linear system

(idk ⊗ x[k])
TA(idk ⊗ x[k])xk = (idk ⊗ x[k])

T b. (24)

By using the elementary rules of the Kronecker product, the matrix of the left
side of (24) can be written as

(idk ⊗ x[k])
T

 r∑
i=1

d⊗
j=1

A
(i)
j

 (idk ⊗ x[k]) =

r∑
i=1

⊗
j 6=k

xTj A
(i)
j xj

⊗A(i)
k .

Since xTj A
(i)
j xj ∈ R, this allows to compute directly the left side of (24) as

r∑
i=1

α
(i)
k A

(i)
k , (25)

where

α
(i)
k :=

d∏
j=1

j 6=k

xTj A
(i)
j xj for 1 ≤ k ≤ d, 1 ≤ i ≤ r, (26)

and then solve the linear system (24). If mk = m for 1 ≤ k ≤ d this strategy
uses O(m2) elementary numerical operations. Thus, under this assumptions
and for d ≥ 3, it seems better the use of this second strategy.

Theorem 3.2 jointly all said above allows to propose the following procedure,
given in Algorithm 2, to compute a minimum of J for Laplacian-like matrices.
We point out that to check if the minimum is reached, it is better the use of the

distance function given by max1≤i≤d |x(0)i − x(1)i |2, against the standard one

given by |J (x
(0)
1 , . . . , x

(0)
d)−J (x

(1)
1 , . . . , x

(1)
d)|, because the number of elementary

operations is smaller.
Now, we give some numerical examples of the (14)- (17) algorithm, with

r = (1, . . . , 1), and performed by using Octave in a laptop with an Intel Atom
processor with 1 Gb RAM and running under a Linux Kernel 2.6.38. We have
previously fixed d = r = 3. Then, given m ≥ 1, the linear systems are con-
structed as follows. We generate randomly, for each ω in some finite sample
space Ω, a symmetric positive definite matrix Aj

k(ω) ∈ Rm×m, for 1 ≤ k ≤ 3

and 1 ≤ j ≤ 3, and a vector b(ω) ∈ Rm3

. Then we consider

A(ω) =

3∑
j=1

(Aj
1 ⊗A

j
2 ⊗A

j
3)(ω) ∈ Rm3×m3

. (27)

8

Algorithm 2 An Alternated Block Coordinate Algorithm for Laplacian-like
matrices

1: Given A =
∑r

i=1

⊗d
j=1A

(i)
j ∈ R`(m)×`(m) and b ∈ R`(m).

2: Initialize x
(0)
i ∈ Rri for i = 1, 2 . . . , d.

3: Introduce ε > 0 and itermax, iter = 1.
4: while distance > ε and iter < itermax do
5: for k = 1, 2, . . . , d do

6: x
(1)
k = x

(0)
k

7: for i = 1, 2, . . . , r do

8: α
(i)
k =

(∏k−1
j=1 (x

(0)
j)TA

(i)
j x

(0)
j

)(∏d
j=k+1(x

(1)
j)TA

(i)
j x

(1)
j

)
9: end for

10: x
(0)
k solves

(∑r
i=1 α

(i)
k A

(i)
k

)
xk = (idk ⊗ x

(0)
[k])

T b . x
(0)
[k] = ⊗j 6=kx

(0)
j .

11: end for
12: iter = iter + 1.
13: distance = max1≤i≤d |x(0)i − x

(1)
i |2.

14: end while

We study, in a sample space Ω = {ω1, . . . , ωN}, the residual behavior of the
(14)- (17) steps by means the map ΦN : N→ R given by

ΦN (n) := log

(
1

N

N∑
i=1

|b(ωi)−A(ωi)un−1(ωi)|2

)
,

where un(ωi) solves (15), that is, in this case

min
(v1,...,vd)∈Rm×···×Rm

|b(ωi)−A(ωi)(un−1(ωi) +⊗d
j=1vj)|2.

To show how both strategies can affect the convergence of the PGD, we fix
m = 4 and consider two samples N1 = N2 = 500. In both cases we run (14)-
(17), by using the Algorithm 2 with itermax = 50 and ε = 2.2204 × 10−16.
In the first sample, we use (23) to solve (15), in Figure 1 we plot ΦN1

(n) for
n = 1, . . . , 100. On the other hand, for the second sample we consider (25) to
solve (15). In this second experiment we also plot ΦN2(n) for n = 1, . . . , 100 as
we show in Figure 2. In this performance of the PGD algorithm (14)-(17) for
Laplacian-like matrices, we obtain better numerical results by using (25) against
the use of (23) proposed in [1].

Now, we would to test the dependence of the accuracy with respect to m.
To this end we consider (N,m) ∈ {(1, 4), (1, 7), (1, 10), (1, 15)} and compute for
each case u100 as an approximation of A−1b. Also we perform Algorithm 2
with itermax = 50 and ε = 2.2204 × 10−16. In Table 4 we show the evolution
of the relative error and the CPU time as a function of m. We remark that
for m = 20, that is A ∈ R5832×5832, when we try to compute A to use Oc-
tave’s standard solver, it returns the message: error: memory exhausted or

requested size too large for range of Octave’s index. However, using
(14)-(17) with (25, since we do not need to compute explicitly the matrix A we
can solve, for m = 20, the linear system in a CPU time of 4070.55 seconds. The
residual behavior can be seen in Figure 3.

9

-1

-0.5

0

0.5

1

0 20 40 60 80 100

lo
g1

0(
|r

es
id

ua
ls

| 2
)

PGD iteration

Figure 1: The map ΦN1 for n = 1, . . . , 100.

-8

-6

-4

-2

0

2

0 20 40 60 80 100

lo
g1

0(
|r

es
id

ua
ls

| 2
)

PGD iteration

Figure 2: The map ΦN2 for n = 1, . . . , 100.

10

m,m3 CPU time Relative error

4,64 12.65 9.53e-11
7,343 17.53 0.0016

10,1000 23.94 0.0544
15,3375 52.42 0.1567

Table 1: The CPU time and the relative error obtained by using 100 PGD-steps to compute
an approximate solution u100 ≈ A−1b, for linear system where A is a symmetric matrix given
in separated representation form with r = 3 and d = 3.

-15

-10

-5

0

5

0 1000 2000 3000 4000 5000

lo
g
1

0
(|

re
si

d
u
a
ls

| 2
)

PGD iteration

Figure 3: The evolution for the residuals for 5000 steps of PGD by using (25) for a matrix of
size 5832 × 5832. The CPU time was of 4070.55 seconds.

11

[1] A. Ammar, F. Chinesta, and A. Falcó: On the convergence of a greedy
rank-one update algorithm for a class of linear systems. Archives of Com-
putational Methods in Engineering, 17(4):473–486, 2010.

[2] A. Ammar, B. Mokdad, F. Chinesta and, R. Keunings: A new family
of solvers for some classes of multidimensional partial differential equa-
tions encountered in kinetic theory modeling of complex fluids, J. Non-
Newtonian Fluid Mech. , 139, 153-176, 2006.

[3] A. Ammar, B. Mokdad, F. Chinesta and, R. Keunings: A new family of
solvers for some classes of multidimensional partial differential equations
encountered in kinetic theory modeling of complex fluids. Part II: transient
simulation using space-time separated representations, J. Non-Newtonian
Fluid Mech., 144, 98-121, 2007.

[4] C. Le Bris, T. Lelièvre, and, Y. Maday: Constructive Approximation,
30(3):621–651, 2009.

[5] A. Falcó and, W. Hackbusch: On minimal subspaces in tensor representa-
tions. To appear in Found. Comput. Math. Available as Preprint 70/2010
at Max Planck Institute for Mathematics in the Sciences, 2010.

[6] A. Falcó and, A. Nouy: A Proper Generalized Decomposition for the
solution of elliptic problems in abstract form by using a functional Eckart-
Young approach. J. Math. Anal. Appl., 376: 469–480, 2011.

[7] L. Figueroa and, E. Süli: Greedy approximation of high-dimensional
Ornstein-Uhlenbeck operators with unbounded drift. Submitted, 2011.
Available from arXiv: http://arxiv.org/abs/1103.0726

[8] W. H. Greub: Linear Algebra. Graduate Text in Mathematics, Springer-
Verlag, fourth edition, 1981.

[9] W. Hackbusch: Tensor spaces and numerical tensor calculus. Monograph
in preparation.

[10] R. A. DeVore and, V. N. Temlyakov: Some remarks on greedy algorithms.
Adv. Comput. Math. 5 (2-3), 173187, 1996.

[11] V. de Silva and, L.-H. Lim: Tensor rank and ill-posedness of the best low-
rank approximation problem. SIAM Journal of Matrix Analysis & Appl.,
30(3):1084–1127, 2008.

[12] C. Eckart and, G. Young: The Approximation Of One Matrix By Another
Of Lower Rank. Psychometrika, 1(3):211–218, 1936.

[13] A. Lozinski, R. G. Owen, and T. N. Phillips: The Langevin and the
Fokker–Plank Equation in Polymer Rheology. In Numerical Methods for
Non-Newtonian Fluids. Handbook of Numerical Analysis, vol. XVI: 211–
303, Elsevier 2011.

[14] R. Meise and D. Vogt: Introduction to Functional Analysis. Clarendon
Press, Oxford, 1997.

[15] E. Schmidt : Zur Theorie der linearen und nichtlinearen Integralgleichun-
gen I, Math. Annalen 63:433–476, 1906.

12

