
Fast matrix-vector multiplication for tight-binding

hamiltonial matrices in the Lanczos method

D. Santo-Orceroa, C. R. Zachariasb, A. Falcóc

aDepartamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
Complejo Tecnológico, Campus de Teatinos 29071 Málaga. Spain.

bDepartamento de Fisica-Quimica, Universidade Estadual Paulista - UNESP, Av. Dr.
Ariberto Pereira da Cunha, 333, 12.516-410- Guaratinguetá, Brazil

cDepartamento de Ciencias, Físicas, Matemáticas y de la Computación, Universidad CEU
Cardenal Herrera San Bartolomé 55 46115 Alfara del Patriarca (Valencia), Spain.

Abstract

In this paper we introduce an fast matrix-vector multiplication for tight-binding
hamiltonial matrices in the Lanczos method, to obtain a O(N)-matrix-vector
multiplication algorithm. We will show that we are to be able to reduce the
memory size used in the storage, from O(N2) to O(N), and also to avoid the use
of swap on disk. Moreover, we obtain an e�cient use of the system cache, due to
an improvement on the locality of the numerical operations. Some performances
based on Silicon clusters are given.

Keywords: Matrix�vector multiplication , Tight-Binding Hamiltonian
matrices, Lanczos Algorithm.

Email addresses: dsanto@lcc.uma.es (D. Santo-Orcero), zacha@feg.unesp.br (C.
R. Zacharias), afalco@uch.ceu.es (A. Falcó)

Preprint submitted to Elsevier December 13, 2010

1. Introduction

The numerical tools used to study larger systems, like pair-potential meth-
ods, usually fail on accuracy even in the case when few atoms are involved.
Moreover, it is well-known that they cannot correctly evaluate the energy from
larger molecules to crystalline solids.

The semi-empirical methods are a good compromise solution between the
accuracy of �ab-initio� and the performance of pair-potential methods. One of
the most common is the tight�binding method [20]. It has a good accuracy in
order to compute the energy levels for elements, like Silicon [29, 19, 2, 22, 23,
20, 21, 27]. The eigenvalues of the the tight�binding Hamiltonian can also be
used for molecular dynamics simulations when a suitable repulsive potential is
added in the �nal energy expression [15, 11, 15, 24, 25]. In particular, for several
atoms with directional bonds and with di�erent possible hybridization, the pair-
potential methods are useless [8]; and the tight�binding framework provides a
good approximation of the energy levels.

The dimension N of a Hamiltonian matrix arising in the tight�binding
method, can be written as N = norbNat, where Nat is the number of atoms and
norb is the number of Löwdin orbitals per atom. Then, in order to calculate the
total energy, this matrix must be tridiagonalized. From a computational point
of view, this fact has been recognized as the more important critical one. Several
techniques based either on the concept of localized orbitals [9, 18, 26, 13, 14], or
in calculation of the density matrix [17, 7, 1, 33, 3] have been proposed. There
are a lot of methods that can be used to tridiagonalize Hamiltonian matrices,
they have in common the same drawback: their cubical scaling on N .

One of these numerical methods is Lanczos algorithm [10] which has two
interesting properties. The �rst is that it does not degrade the sparsity of the
matrix. The second one, is that its bottleneck is produced by a vector-matrix
multiplication producing a cubical scaling in the execution of the algorithm.

In this paper, we substitute the standard matrix�vector multiplication scal-
ing quadratically, by one that scales linearly on N. Moreover, due to the im-
provement of the locality of the operations, it allows to a better use of the cache
of the system and it also reduces the memory storage avoiding the swap on disk.
We point out that this procedure strongly depends on the structure of the tight�
binding Hamiltonian matrices, and that it can be applied to any variant of the
Lanczos method, even if it includes any kind of re-orthogonalization process.

2. Computing the energy levels of atom clusters

2.1. The tight�binding Hamiltonian matrices

The Hamiltonian matrix H can be viewed as a partitioned matrix N × N,
which is formed by norb × norb�matrices Hi,j , for 1 ≤ i, j ≤ norb. Each of these
blocks is generated by the relationship between the i�th and the j�th cluster
atoms. Then, Nat := N/norb is the total number of atoms in the cluster. The
composition of each block Hi,j is also intuitive: it models the interaction of the
orbitals of i�th atom against the orbitals of j�th atom. This implies that the

2

l×m�element of the Hi,j�block is computed by using the relationships between
the l�th orbital from i�th atom and the m�th orbital from the j�th atom. The
blocks placed in the diagonal model the energy of the atom against itself and,
in consequence, are diagonal matrices. The tight�binding Hamiltonian matrix
H for large clusters of atoms is heavily sparse, due to the existence of a cut
distance as we explain below. Some examples are given in Figures 1-3.

2.2. Obtaining the eigenvalues of the tight�binding Hamiltonian

The mathematical problem of tight�binding energy computations can be re-
duced to the diagonalization of the Hamiltonian matrix. Usually its eigenvalues
and its eigenvectors are computed reducing this matrix to its tridiagonal form.

There are several algorithms in order to compute the tridiagonal form of a
symmetric matrix. However, the most part of the computational time is used
on the process of tridiagonalization of the matrix. In the better algorithms, the
complexity of each one reduction scales cubically on N.

Moreover, some optimizations that can be used on heavily-sparse, banded
matrices allow us to break the limit of the O(N3) complexity on a standard
tridiagonalization. For example, some matrices can be internally reordered,
keeping the values of the eigenvalues invariant. However, this is not the case for
tight�binding due to the fact that the zero blocks are caused by the distance
between a pair of atoms. Thus the atoms have a spacial relationship with
physical sense in a 3D environment. We point out that the Hamiltonian of
1D atoms can be easily banded, and maybe 2D atoms clusters can also be
banded with some restrictions, but those methods are outside the scope of this
paper. Finally, there are algorithms such as Cuthill and McKee [6] that allow
reordering of the Hamiltonian but the reordering algorithms for a generic 3D
Hamiltonian matrix that can be found on the bibliography are far from giving a
banded matrix on the general case, and they only reduce the maximum distance
between atom labels.

Our proposed algorithm is valid for any cluster of atoms with physical sense
in a 3D environment and does not need any reordering at all. Recall that the
diagonalization methods, like Jacobi, completely destroy the sparsity [30] and
it

2.3. The common Lanczos method

The Lanczos method is based on the search for an orthonormal base to the
Kyrlov subspace; a procedure that needs to optimize the Rayleigh quotient in
its operation [10]. As we can see in the Algorithm 1, each step i → i + 1
requires about 5N scalar multiplications and one multiplication of the matrix
H with a vector which implies N2 aritmethic operations. The complexity in its
implementation is O(N3) + 5O(N2) where the dominant operation is give by
the matrix-vector multiplication Hw. It is also important that it is the unique
operation inside the loop where the matrix H is used. Observe that the matrix
remains unchanged along this loop. This leads with the well known property of
the Lanczos algorithm: the sparsity of the matrix is preserved.

3

Algorithm 1 The Lanczos Method
procedure Lanczos(H,q)

w := [w1 · · ·wN
]T := q; . q satis�es ||q|| = 1

v = [v1 · · · vN
]T := 0;

γ1 := 0; i := 1;
while γi 6= 0 do

if i 6= 1 then

for k := 1, N do

t := wk;wk = vk/γi; vk := −γit;
end for

end if

v := v +Hw;
δi = wTv;
v := v − δiw;
m := i; i := i+ 1;
γi =

√
vTv;

end while

end procedure

We point out that the bottleneck is in the product Hw, no matter whether
we reorthogonalize or not. That product is always O(N2), and uses most of the
computing time. The rest of the algorithm executes this product a number of
times which is proportional to N ; this means that the product Hw is totally
responsible for the computational complexity of the algorithm. This property
is the milestone of our proposed algorithm.

The limitation of the Lanczos method is due to the use of �oat-point arith-
metic because the orthonormal basis of the Kyrlov subspace can be lose its
orthogonal property [28]. Then �Ghost eigenvalues� commonly appear and it
can be solved in by using reorthogonalization methods that are widely docu-
mented, as in [28, 31]. Since the reorthogonalization procedure does not a�ect
the matrix H, the structure of the algorithm unaltered and the �nal complexity
of the algorithm remains unchanged.

3. An algorithm to compute Hw

The key to our method is that, as commented before, the tight�binding
Hamiltonian matrix is internally organized as a block matrix, where a nij block
represents the interactions between the orbitals of the i atom and the j atom.

We have two physical facts that allow us to simplify the operation, which are
needed for the proposed optimizations. The �rst is that over a predetermined
cut distance, the e�ect between the orbitals will be zero, so the related block
will also be zero. The second one is that below a predetermined nearest-limit
distance, the atom cluster does not make physical sense: we cannot put two
atoms as near as we want to, because in that case the cluster won't make
physical sense.

4

We recall that we have described the tight�binding Hamiltonian matrix as
H = {Hi,j}, where i, j ∈ {1, 2, . . . , Nat} and Hi,j is a norb×norb�matrix, where
norb � Nat. Moreover, for each i 6= j, the block Hi,j = O if and only if the
distance between atom i and atom j is greater or equal to d∗atom. This d

∗
atom is

obtained from the work of K. Laasonen and R. N. Nieminen [15]. They de�ne
the cut distance as:

fcut(d) =
1

e
‖d−rcut‖

∆ + 1
, (1)

and it represents the distance of the �rst neighbors and the second neighbors
of the crystallized material. Note that the diagonal block elements Hi,i are
norb × norb-diagonal matrices for i = 1, 2, . . . , Nat.

Those facts allow us to use a variation of Compressed Sparse Row format.
This variation have two elements: a list of non-zero blocks, and a list of jumps.
The block is �xed-size, and its width and height is the number of Löwdin orbitals
per atom.

When two atoms are far enough -the distance between them is greater or
equal to d∗atom-, all the elements of the block that models their relationship are
zero. When two atoms are close enough, all the elements on that block are
di�erent to zero. Recall that we model the Hamiltonian as a matrix of blocks,
where the i, j block models the relationship between i atom and j. Then, for
a given i block row, there will the same number of blocks that atoms can be
found on a distance below d∗atom from i atom. This number is low, in fact: using
a hexagonal closed packaging -the regular arrangement of identical spheres so
that they take up the greatest possible fraction of an in�nite 3-dimensional space
-so they are packed as densely as possible-[5], with nearest atoms at 1.8 Å, the
number of neighbors is 56 on its worst case; so 65 neighborhoods can be a safe
worst-case value. That results allow, known the number of atoms of the cluster,
store the blocks on an array without using dynamic structures like lists, which
are slower to handle. The key point here is that only non-diagonal non-zero
block are stored; and they are stored sequentially, �rst by row; so we can safely
suppose that the stored number of blocks is under N × 65.

An special consideration have to be done about the i, i blocks -the block
diagonal-. Each one of those blocks is itself a diagonal matrix that it does not
depend on the spatial con�guration of the cluster, but on the atom itself. The
Hamiltonian matrix shows that all the i and all j have at least one non-zero
block, i, i, which is a diagonal matrix. So the diagonal block does not need
storage, and the part of the product of the block diagonal can be computed on
initialization of the accumulators of Hw operation.

The second array has the key of the operation. The k position of the jump
array means the relationship between the k block stored, and the k + 1 block
stored. A number d below 4 × norb × N means that the stored k + 1 block is
d positions shifted right to the end of the non-blocked Hamiltonian; where the
shift is in scalar positions on the Hamiltonian, not in blocks. So a 0 in k position
means that k and k + 1 blocks are adjacent on matrix; 4 in k position means
that k and k+1 blocks have a zero block between them, and so on. A number d
over ×norb×N means "new row". That means that Hw is as simple as running

5

along H calculating at the same time four rows of Hw. For a particular k block,
16 products are calculated at the same iteration, and its results are stored on 4
accumulators. Finished that operation, the k position of the jump array is used
to increment the reference over w.

This allows that there are computed the minimal number of needed products,
and that the structure is not iterated needlessly.

In a formal description of the algorithm to compute Hw we will use the
following notation. For each i = 1, 2, . . . , Nat we de�ne the set

Zi = {j ∈ {1, 2, . . . , Nat}, j 6= i : Hi,j 6= O} ,

and we take
w =

(
wT

1 wT
2 · · · wT

Nat

)T ∈ RN ,

where wj ∈ Rnorb . Then Hw =((∑Nat

j=1H1,jwj

)T
· · ·

(∑Nat

j=1HNat,jwj

)T)T
.

Clearly, this matrix-vector product uses Nat×(norb
2×Nat) = N2 operations

and does not take advantage of the zero blocks and their location.
Before starting to run Algorithm 1, we need to �ll the matrixH. Our strategy

will be to e�ciently codify the information about the non-diagonal non-zero
blocks: there is no reason to store and operate on a huge numbers of zeros. To
this end we introduce the following notation.

For each i = 1, 2, . . . , Nat we denote by ni = Card Zi and set

n∗ = max
1≤i≤Nat

ni.

Moreover, by means to the physical properties of the problem n∗ � Nat. Now,
we denote by πi, the unique strictly increasing map from {1, 2, . . . , ni} to Zi.
Then, by using these maps, we can write each component of the matrix�vector
product as

Nat∑
j=1

Hi,jwj =

Nat∑
j=1

Hj,jwj +

ni∑
j=1

Hi,πi(j)wπi(j)

for i = 1, 2, . . . , Nat. We remark that the number of operations in the matrix-
vector product using the maps πi is equal to

N +

Nat∑
i=1

(norb
2 × ni) ≤ N +Nat

(
norb

2 × n∗
)

(2)

= N(1 + (norb × n∗)) (3)

where
1 + (norb × n∗)� N.

6

Thus, the matrix�vector product algorithm using π = (π1, π2, . . . πNat) has
a complexity of O(N). In our implementation, we use the pointer arithmetic of
the C language to introduce π in our matrix�vector product algorithm.

A standard Lanczos process has a complexity of O(N3) + 4O(N) in time
and O(N2) in space to compute the eigenvalues. With this proposed algorithm,
the complexity would be O(N2) + 4O(N) in time and O(N) in space. The
multiplication constants of complexity are values that depend on the average
quantity of atoms on the sphere of in�uence of any atom: atoms farther than
this distance are not taken into account, so the block caused by the crossed
interaction between the current atom and one further away is zeroed. This
value is related to the cut distance -limited by (1)-, and the ratio of atoms on
the surface of the clusters -in most of the clusters the majority of atoms are on
the surface of the cluster, as shown in [12]-. It is important to remark that by
means of expression (3) and the �nal implementation we can obtain an upper
limit for each ratio.

4. A pseudo-code for v := v + Hw

We will show a particular implementation of the algorithm here, but the fact
that does not use anymore data structure than arrays allows to implement it on
languages like Fortran 77.

The variables used to store H, w matrix, and v-including v the result of the
operation are given by:

struct structAtom

{

float x;

float y;

float z;

};

typedef struct structAtom tcluster;

tcluster cluster[_num_matrix_atoms];

float *Hbase;

unsigned long int *OcupBase;

float *vBase;

float *wBase;

Now we specialize to make the Hw product for the particular case of Silicon
clusters. Note that it also works, with some changes, with any cluster of atoms
with four Löwdin orbitals per atom changing the diagonal constants and the cal-
culation of the block; but it can easily be rewritten for any particular number of
Löwdin orbitals per atoms. Some optimizations which improve the performance
of the algorithm are the following:

7

• The temporal values of v are accumulated on Ss, Sx, Sy, and Sz.

• Each diagonal block is considered zero on the algorithm because it is
precomputed and stored in Ss,Sx, Sy, and Sz.

• The loop is organized to compute correctly any sequence of empty blocks
lines, without exceptions or need of any special cases.

The proposed algorithm calculates the full core Lanczos operation v :=
v +Hw. Moreover, it is enough to clean v before calling this algorithm,
if only Hw is needed.

float Ss, Sx, Sy, Sz;

float *H, *v, *w;

unsigned long int *ocup;

unsigned long int diagonal;

unsigned long int index;

/* Initiation of the algorithm */

Ss = Sx = Sy = Sz = 0;

diagonal = 0;

/* Let's suppose that Abase, OcupBase and vBase */

/* have the matrix on the correct format */

H = Hbase;

ocup = OcupBase;

v = vBase;

/* _num_matrix_atoms is the N of the demonstration */

for (index = 0; index < _num_matrix_atoms; index++)

{

/* As far as the central point of the diagonal */

/* is always computed of the same way, and it is */

/* not stored on the matrix, we used a pre-computed */

/* element, and store it on the accumulators. */

/* First operation is on the diagonal element */

/* It is the energy contribution of the */

/* relationship of the atom with itself. */

/* _ORBITAL_something is a physical constant. */

Ss = _ORBITAL_ss * (wBase[diagonal]);

diagonal++;

8

Sx = _ORBITAL_xx * (wBase[diagonal]);

diagonal++;

Sy = _ORBITAL_yy * (wBase[diagonal]);

diagonal++;

Sz = _ORBITAL_zz * (wBase[diagonal]);

diagonal++;

/* We inicialize w. */

w = wBase;

/* We compute for each non-zeroed block; (*ocup) */

/* has the shift to the next non-zeroed block. So */

/* far it has no sense a jump greater than */

/* (4*_num_matrix_atoms)+1, we will take a number */

/* greater than 4*_num_matrix_atoms+1 as the */

/* ``end of line'' */

while ((*ocup) < (4 * _num_matrix_atoms + 1))

{

w += (*ocup);

/* Here we make the partial operation H * block */

/* Compute the Ss accumulator */

Ss +=

(*(H++)) * (*w) + (*(H++)) * (*w) + (*(H++)) * (*w) +

(*(H++)) * (*w);

w++;

/* Compute the Sx accumulator */

Sx +=

(*(H++)) * (*w) + (*(H++)) * (*w) + (*(H++)) * (*w) +

(*(H++)) * (*w);

w++;

/* Compute the Sy accumulator */

Sy +=

(*(H++)) * (*w) + (*(H++)) * (*w) + (*(H++)) * (*w) +

(*(H++)) * (*w);

w++;

/* Compute the Sz accumulator */

Sz +=

(*(H++)) * (*w) + (*(H++)) * (*w) + (*(H++)) * (*w) +

(*(H++)) * (*w);

/* Next one */

ocup++;

}

/* When we reach here, the line has ended. */

9

/* Ok; Ss, Sx, Sy and Sz have accumulated */

/* the right value of v */

*v = Ss;

v++;

*v = Sx;

v++;

*v = Sy;

v++;

*v = Sz;

v++;

/* And we prepare the next iteration */

};

4.1. Filling the matrix

The process of �ll the matrix is O(N2
at). Let atomX[i] be the X coordinate

of the i-th atom, atomY [i] the Y coordinate of the i-th atom, and atomZ[i] the
Z coordinate of the i-th atom. The basic algorithm to �ll the matrix is:

float *H, *v, *w;

unsigned long int *ocup;

unsigned long int i, j;

float deltaX, deltaY, deltaZ;

unsigned long int temp_dist;

float distance2;

H = Hbase;

ocup = OcupBase;

for (i = 0; i < _num_matrix_atoms; i++)

{

temp_dist = 0;

for (j = 0; j < _num_matrix_atoms; j++)

{

if (i != j)

{

deltaX = (molecula[i].x - molecula[j].x);

deltaY = (molecula[i].y - molecula[j].y);

deltaZ = (molecula[i].z - molecula[j].z);

distance2 = deltaX * deltaX +

deltaY * deltaY + deltaZ * deltaZ;

if (distance2 > _cutoff_distance_2)

{

temp_dist += 4;

10

}

else

{

*ocup = temp_dist;

temp_dist = 0;

ocup++;

/* Here the block is computed, and

stored in H[0],H[1]... H[16] */

/* End of H[0],H[1]... H[16] computation */

H+=16;

}

}

}

/* Next block line */

*ocup = 4 * (_num_matrix_atoms) + 2;

ocup++;

}

The expressions for the block matrix elements H[0],H[1]... H[16] can be
obtained from [4].

5. A case study: Silicon clusters

5.1. The Silicon algorithm and constants

This case study will be the Tight-Binding Hamiltonian for Silicon clusters
with the orthogonal Tight-Binding parameterization de�ned by J. D. Chadi in
[4], and the parameterized integrals of Slater�Koster as described in [32]. The
cut equation used was that described in [15], and its constants were a distance
of 3.83 Å, for which was used a cut value rcut of 3.3 Å, and ∆ as 0.2 Å on (1)
expression. [16] proved that the results of the simulations are robust against
short variations in these values. In any other atoms the value of the distance
will change, but the order of magnitude will remain similar.

5.2. Numerical results

The described algorithm, developed in C language using a static structure
reserved on the heap, was executed on a laptop with AMD Turion 64 at 1.5GHz,
512 KB of cache and 512MB of RAM under Linux operating system. The kernel
used has not multicore built-in, and 32 bit-only processor support.

A number of core Lanczos operations v := v + Hw where executed under
an arti�cially generated worst-case scenario of a Silicon spherical cluster at
1.8Å minimal distance using a hexagonal closed packaging, with the algorithm
described in this paper.

The results can be seen in Figures, 5, 6 and 7. In each graphic, the x-
coordinate is the number of atoms of the Hamiltonian, and the y-coordinate

11

is the computation time in seconds of the indicated number of v := v + Hw
operations.

As the �gures show, the computation time of v := v + Hw scales linearly
according to the increase in the number of atoms of the Hamiltonian -ergo
the size of H matrix-. The slope of the computation time curve against the
number of atoms is not high, so the proposed algorithm shows excellent behavior
between 10 and 2500 atoms. With such a fast v := v +Hw computation (ie,
0.01403 seconds for each iteration of a 104 × 104 matrix), it is feasible to use
reorthogonalization techniques on huge Hamiltonians in a reasonable time.

The time of the computation for more than 25000 atoms has a linear evolu-
tion; but it does not have the linear behavior that it has between 10 and 25000
atoms. The main reason is that for more than 25000 atoms the set does not �t
into the cache of the processor. The slope gets worse once the structure does
not �t on the memory cache, but the computation time behaves well and allows
the use of the algorithm on higher matrices.

6. Conclusions

Our results show that the proposed algorithm reduces the order of complexity
of tight�binding Hamiltonian matrices tridiagonalization from a cubic scaling
to a quadratic one. It also allows a better storage of the matrix and a more
e�cient use of memory and cache.

The proposed matrix�vector product can be applied to any Lanczos varia-
tion, with or without reorthogonalization. It allows us to work with clusters
several orders of magnitude greater, whose energy can be accurately calculated
using tight-binding, replacing the pair-potential methods, which are less-precise
and more prone to errors.

[1] Alavi, A., and Frenkel, D. Grand-canonical simulations of solvated
ideal fermions. evidence for phase separation. The Journal of Chemical

Physics 97, 12 (December 1992), 9249�9257.

[2] annd Ernst Richter, M. M., and Subbaswamy, K. R. Structural
and vibrational properties of fullerenes and nanotubes in a nonorthogonal
tight-binding scheme. Journal of Chemical Physics 104, 15 (April 1996),
5875�5882.

[3] Aoki, M. Rapidly convergent bond order expansion for atomistic simula-
tions. Physical Review Letters 71, 23 (December 1993), 3842�3845.

[4] Chadi, D. Theoretical study of the atomic structure of silicon (211), (311),
and (331) surfaces. Physical review B 29, 2 (January 1984), 785�792.

[5] Conway, J. H., and Sloane, N. J. A. Sphere Packings, Lattices, and

Groups, 2nd ed. Springer-Verlag, 1993.

12

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

Figure 1: The sparsity pattern of a prolate 300 atom Si cluster at 2.1Å minimal distance with
a hexagonal closed packaging.

13

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

Figure 2: The sparsity pattern of a spherical 300 atom Si cluster at 2.1Å minimal distance
with a hexagonal closed packaging.

14

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

Figure 3: The sparsity pattern of a spherical 300 atom Si cluster at 1.8Å minimal distance
with a hexagonal closed packaging. It was used as a worst-case scenario in this paper.

15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000

2YQFIV�SJ�EXSQW

'49�XMQI�MR�W�

Figure 4: A performance of 107 core Lanczos operations -multiplication and addition-, between
10 and 1000 atoms.

16

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2YQFIV�SJ�EXSQW

'49�XMQI�MR�W�

Figure 5: A performance of 106 core Lanczos operations -multiplication and addition-, between
100 and 104 atoms.

17

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

2YQFIV�SJ�EXSQW

'49�XMQI�MR�W�

Figure 6: A performance of 105 core Lanczos operations -multiplication and addition-, between
104 and 105 atoms.

18

[6] Cuthill, E., and McKee, J. Reducing the bandwidth of sparse sym-
metric matrices. Proceedings of the 24th Nat. Conf. Assoc. Comp. Mach.

(1969), 157 � 172.

[7] Daw, M. S. Model for energetics of solids based on the density matrix.
Physical Review B 47, 16 (April 1993), 10895�10898.

[8] Feuston, B. P., Kalia, R. K., and Vashishta, P. Fragmentation of
silicon microclusters: a molecular-dynamics study. Physical Review B 35,
12 (April 1987), 6222�6239.

[9] Galli, G., and Parrinello, M. Large scale electronic structure calcu-
lations. Physical Review Letters 69, 24 (December 1992), 3547�3550.

[10] Golub, G. H., and Loan, C. F. V. Matrix Computations. The Johns
Hopkins University Press, Baltimore, 1996.

[11] Goodwin, L., Skinner, A., and Pettifor, D. Generating transferable
tight-binding parameters: application to silicon. Europhysics Letters 9

(August 1989), 701.

[12] Kaxiras, E., and Jackson, K. Shape of small silicon clusters. Physical
Review Letters 71, 5 (1993), 727�730.

[13] Kohn, W. Density functional/wannier function theory for systems of very
many atoms. Chemical Physics Letters 208, 4 (1993), 167�172.

[14] Kohn, W. Density functional and density matrix method scaling linearly
with the number of atoms. Physical Review Letters 76, 17 (1996), 3168�
3171.

[15] Laasonen, K., and Nieminen, R. Molecular dynamics using the tight-
binding approximation. Journal of Physics: Condensed Matter 2 (1990),
1509�1520.

[16] Lemes, M. R. Estudo do estado fundamental de aglomerados de Silicio

via redes neurais. PhD thesis, Instituto Tecnológico de Aeronáutica - ITA,
1995.

[17] Li, X. P., Nunes, R. W., and Vanderbilt, D. Density-matrix
electronic-structure method with linear system-size scaling. Physical Re-

view B 47, 16 (April 1993), 10891�10894.

[18] Mauri, F., Galli, G., and Car, R. Orbital formulation for electronic-
structure calculations with linear system-size scaling. Physical Review B

47, 15 (April 1993), 9973�9976.

[19] Menon, M., and Subbaswamy, K. R. Universal parameter tight-binding
molecular dynamics: Application to c60. Physical Review Letters 67, 25
(December 1991), 3487�3490.

19

[20] Menon, M., and Subbaswamy, K. R. Nonorthogonal tight-binding
molecular-dynamics study of silicon clusters. Physical Review B 47, 19
(May 1993), 12754�12759.

[21] Menon, M., and Subbaswamy, K. R. Structure of Si60. Cage versus
network structures. Chemical Physics Letters 219 (March 1994), 219�222.

[22] Menon, M., Subbaswamy, K. R., and Sawtarie, M. Structure of
c20: Bicyclic ring versus cage. Physical review B 49, 11 (March 1993),
7739�7743.

[23] Menon, M., Subbaswamy, K. R., and Sawtarie, M. Structure and
properties of c60 dimers by generalized tight-binding molecular dynamics.
Physical Review B 49, 19 (May 1994), 13966�13969.

[24] Min, B. J., Lee, Y. H., Wang, C., Chan, C. T., and Ho, K. M.

Tight-binding model for hydrogen-silicon interactions. Physical Review B

45, 12 (1992), 6839�6843.

[25] Molteni, C., Colombo, L., and Miglio, L. Structural properties of
liquid and amorphous GaAs by tight-binding molecular dynamics. Euro-

physics Letters 24 (December 1993), 659.

[26] Ordejón, P., Drabold, D. A., Grumbach, M. P., and Martin,

R. M. Unconstrained minimization approach for electronic computations
that scales linearly with system size. Physical Review B 50, 19 (November
1994), 14646�14649.

[27] Ordejón, P., Lebedenko, D., and Menon, M. Improved nonorthogo-
nal tight-binding hamiltonian for molecular-dynamics simulations of silicon
clusters. Physical Review B 50, 8 (August 1994), 5645�5650.

[28] Paige, C. Practical use of the symmetric lanczos process with reorthogo-
nalization. BIT 10, 183-195 (1976).

[29] Pan, J., Bahel, A., and Ramakrishna, M. V. Chemistry of nanoscale
semiconductor clusters. Nanomeeting�95 (1997), 1�7.

[30] Saad, Y. Iterative methods for sparse linear systems. PWS Publisher
Company, 1996.

[31] Simon, H. Analysis of the symmetric lanczos algorithm with reorthogo-
nalization methods. Linear algebra and its applications (1984), 101�132.

[32] Slater, J., and Koster, G. Simpli�ed lcao method for the periodic
potential problem. Physical Review 94, 6 (June 1954), 1498�1524.

[33] Yang, W. Direct calculation of electron density in density-functional the-
ory. Physical Review Letters 66, 11 (1991), 1438�1441.

20

