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ABSTRACT

A major challenge in Computational Finance is the pricing of options that depend on a large number of risk

factors. Prominent examples are basket or index options where dozens or even hundreds of stocks constitute
the underlying asset and determine the dimensionality of the corresponding parabolic equation. A number of
problems in high-dimensional spaces have been addressed by the usual technique of separation of variables. In
order to use the separated representation for numerical analysis applications, many algorithms and operations
need to be translated into this framework. The aim this paper is present and review some of these techniques
in the context of High Dimensional Financial Markets Models.
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Algoritmos y métodos numéricos para modelos de alta dimensión en

mercados financieros

RESUMEN

Uno de los mayores retos de las finanzas computacionales consiste en la valoración de opciones que dependen
de un elevado número de factores de riesgo. Ejemplos prominentes son las opciones sobre ı́ndices y cestas en los
cuales docenas o incluso centenares de activos constituyen el activo subyacente y determinan la dimensionalidad
de la ecuación parabólica correspondiente. Un buen número de problemas han sido analizados empleando la
técnica usual de separación de variables. Con el fin de emplear la representación de separación de variables,
muchos algoritmos y operaciones tienen que ser transformados bajo este nuevo enfoque. El objetivo del presente
trabajo en presentar y revisar algunas de estas técnicas en el contexto de los modelos de elevada dimensión en
los mercados financieros españoles.

Palabras Clave: Valoración de Opciones, Métodos Numéricos.

Clasificación JEL: G13, C02

1. INTRODUCTION

Numerous models encountered in science and engineering remain nowadays, despite the

impressive recent progresses attained in computational simulation techniques, intractable when
the usual and well experienced discretization methods are applied for their numerical simulation.

Thus, different challenging issues are waiting for the proposal of a new alternative advanced

simulation framework, the brute force approach being no more a valuable alternative.
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A first challenging issue concerns the treatment of highly multidimensional models arising

from Quantum Mechanics or Kinetic Theory descriptions of solids and Complex Fluids (Chinesta

et al. (2007)), including micro and nano-structured materials (Chinesta, Ammar and Joyot
(2008)). Other multidimensional models are encountered in biology, genetics and chemistry where

the so called chemical master equation plays a key role (Sreenath, Cho and Wellstead (2009)).

Curse of dimensionality also arises in stochastic models involving numerous random variables
(Nouy (2009)). The main challenge in the treatment of this kind of models is related to their

multidimensionality because when one applies standard mesh based discretization techniques

the number of degrees of freedom involved scales exponentially with the dimension of the space
concerned. Thus, in high dimensions, usual meshes cannot be defined at all, needing the proposal

of new advanced strategies able to circumvent the terrible curse of dimensionality. Until now, the

treatment of this kind of models was restricted to the ones defined in moderate multidimensional
spaces where for example the sparse grid based methods works (Bungartz and Griebel (2004)).

The computational complexity of most algorithms in dimension d grows exponentially

in d. Even simply accessing a vector in dimension d requires Nd operations, here N represents
the number of entries in each direction. This effect has been dubbed the curse of dimensionality

(Bellman (1961)), and it is the single greatest impediment to computing in higher dimensions.
A number of problems in high-dimensional spaces have been addressed by the usual

technique of separation of variables. Pierre Ladèveze proposed several years ago a powerful

technique for addressing this kind of challenging models that he called the LATIN method
(Ladeveze (1999)). The LATIN method integrates many ingredients leading to a robust, powerful,

efficient and accurate discretization technique especially well adapted for treating transient multi-

scale non-linear models. The two most outstanding ingredients are (i) the decoupling between a
linear-global problem and a non- linear-local one, both defined in the whole space-time domain;

and (ii) a space- time separated representation of the model variables in order to accelerate the

solution of the linear-global problem. The former separated representation was called by Ladeveze
in the 80’s “radial approximation”, and in our knowledge it was the first time that separated

representations were applied, in this case in the field of Computational Mechanics.

The concept of separated representation was first introduced by Beylkin and Mohlenkamp
(2005). More precisely, for a given map

u : [0, 1]d ⊂ Rd −→ R,

we say that it has a separable representation if

u(x1, . . . , xd) =

∞∑
j=1

u
(j)
1 (x1) · · ·u(j)

d (xd) (1)

Thus, if we consider a mesh of [0, 1] in the xk-variable given by Nk-mesh points, 1 ≤ k ≤ d, then
we can write a discrete version of (1):

u(xi1 , . . . , xid ) =
∞∑
j=1

u
(j)
1 (xi1 ) · · ·u(j)

d (xid ), (2)

where 1 ≤ ik ≤ Nk for 1 ≤ k ≤ d. Observe that if for each 1 ≤ k ≤ d, xjk ∈ RNk denotes

the vector with components u
(j)
k (xik ) for 1 ≤ ik ≤ Nk, then, by using a ⊗-tensor product

representation, (2) it is equivalent to

u =

∞∑
j=1

xj1 ⊗ · · · ⊗ xjd. (3)

We point out that (3) is an useful expression to implemented numerical algorithms using the

Matlab and Octave function kron.
The main point of the separated representation is that since we only operate on low

dimensional objects, the computational complexities are formally linear in the dimension of this
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objects rather than exponential. In particular a vector x1 ⊗ · · · ⊗ xd ∈ RNd
needs dN entries to

store it in the memory of the computer. Assume that

y ≈ ŷ =

r∑
j=1

xj1 ⊗ · · · ⊗ xjd,

for some r ≥ 1, then to store ŷ we only need rdN entries.

Recently, in Ammar et al. (2001) and Ammar et al. (2007), Ammar, Mokdad, Chinesta
and Keunings propose the use of a separated representation, which allows to define a tensor

product approximation basis as well as to decouple the numerical integration of a high
dimensional model in each dimension.

From the mathematical point of view some results concerning the convergence were

obtained by Ammar, Chinesta and Falcó (2009) in a finite dimensional setting. From a variational
point of view and for infinite dimension, some results has been obtained by Le Bris, Lelièvre

and Maday (2009). Its connection with the POD (Proper Orthogonal Decomposition) was

also analyzed in Ladeveze, Passieux and Neron (2009). In fact, introducing the separated
representation into the weak formulation of the model the different functions involved in the

separated representation can be computed. However, these functions that are optimal from the

point of view of the strategy considered, are no more orthogonal. For this reason, the resulting
approximation is called Proper Generalized Decomposition (PGD).

The paper is organized as follows. in the next section we introduce relationship between

separated representation and the best n-term approximation. In Section 3 we give as a case study
a computational approach to the Fundamental Theorem of Asset Pricing in single period market.

Section 4 is devoted to the problem of the first passage time for a high-dimensional Brownian

motion. Finally, some comments and remarks are given.

2. ON THE RELATIONSHIP BETWEEN SEPARATED REPRESENTATION AND THE
BEST N -TERM APPROXIMATION

Before to end this section we describe some of the notation used in this paper. We denote the

set of N ×M -matrices by RN×M , and the transpose of a matrix A is denoted AT . By 〈x,y〉 we
denote the usual Euclidean inner product given by xT y = yT x and its corresponding 2-norm,

‖x‖2 = 〈x,x〉1/2. The matrix IN is the N ×N -identity matrix and when the dimension is clear

from the context, we simply denote it by I. Given a sequence {uj}∞j=0 ⊂ RN , we say that a

vector u ∈ RN can be written as

u =

∞∑
j=0

uj

if and only if

lim
n→∞

n∑
j=0

uj = u

holds in the ‖ · ‖2-topology. Now, we recall the definition and some properties of the Kronecker

product. The Kronecker product of A ∈ RN
′
1×N1 and B ∈ RN

′
2×N2 , written A ⊗K B, is the

tensor algebraic operation defined as

A⊗K B =


A1,1B A1,2B · · · A1,N2N

′
2
B

A2,1B A2,2B · · · A2,N2N
′
2
B

...
...

. . .
...

AN1N
′
1,1
B AN1N

′
1,2
B · · · AN1N

′
1,N2N

′
2
B

 ∈ RN
′
1N
′
2×N1N2 .
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Suppose that for given a linear Partial Differential Equation, and after a discretization

by means Finite Elements, we need to solve the linear system

Au = f , (4)

where A is a (N1 · · ·Nd)× (N1 · · ·Nd)-dimensional invertible matrix, for some N1, N2, . . . , Nd ∈
N. Then from all said above, it seems reasonable to find an approximate solution

A−1f ≈ un =

n∑
j=1

xj1 ⊗K · · · ⊗K xjd

for some n ≥ 1 and where xji ∈ RNi for i = 1, 2, . . . , d and j = 1, 2, . . . , n; satisfying that

lim
n→∞

∥∥A−1f − un
∥∥

2
= 0,

that is,

A−1f =

∞∑
j=1

xj1 ⊗K · · · ⊗K xjd.

For each n ∈ N, we define the set

Sn = {x ∈ RN1···Nd : rank⊗K x ≤ n},

introduced in de Silva and Lim (2009), in the following way. Given x ∈ RN1···Nd we say that

x ∈ S1 = S1(N1, N2, . . . , Nd) if x = x1 ⊗K x2 ⊗K · · · ⊗K xd, where xi ∈ RNi , for i = 1, . . . , d.

For n ≥ 2 we define inductively Sn = Sn(N1, N2, . . . , Nd) = Sn−1 + S1, that is,

Sn =

{
x : x =

k∑
i=1

x(i), x(i) ∈ S1 for 1 ≤ i ≤ k ≤ n
}
.

Note that Sn ⊂ Sn+1 for all n ≥ 1.

We say that un is the n-best term approximation solution of the linear system (4) if

un ∈ argminx∈Sn‖b−Ax‖2. (5)

Unfortunately, in de Silva and Lim (2009), the authors prove that Sn = Sn(N1, N2, . . . , Nd)
for n ≥ 2 and d ≥ 3 is not a closed set in any norm-topology in RN1···Nd . Thus, the following
problem

min
x∈Sn

‖b−Ax‖2, (6)

is ill posed for n ≥ 2 and d ≥ 3. However, it is possible to show that the set S1 is
a closed set in RN1···Nd in any norm-topology. In consequence given an invertible matrix

A ∈ RN1N2···Nd×N1N2···Nd , and for each b ∈ RN1···Nd we obtain that

argminx∈S1
‖b−Ax‖2 6= ∅. (7)

This allow to consider the following iterative scheme. Let u0 = y0 = 0, and for each
n ≥ 1 take

rn−1 = f −Aun−1, (8)

un = un−1 + yn where yn ∈ argminy∈S1
‖rn−1 −Ay‖2. (9)

Note that for each vector f ∈ RN1···Nd and each invertible matrix A ∈ RN1N2···Nd×N1N2···Nd ,

we can construct for each n, by using (8)-(9), a vector

un =
n∑
j=1

yn ∈ Sn \ Sn−1,
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here we assume that yj 6= 0 for 1 ≤ j ≤ n, that is, rank⊗ un = n. Since un ≈ A−1f , we define
the rank⊗ for A−1f obtained by the Greedy Rank-One Update Algorithm (8)-(9) as

rankG⊗ (A−1f) =

{
∞ if {j ≥ 1 : yj = 0} = ∅,

min{j ≥ 1 : yj = 0} − 1 otherwise.

The following theorem due to Amine, Chinesta and Falcó (2009), gives the convergence of the

Greedy Rank-One Update Procedure (8)-(9) (given in pseudocode form in Algorithm 1) for
solving linear systems with full rank matrix.

Theorem 1. Let f ∈ RN1N2···Nd and A ∈ RN1N2···Nd×N1N2···Nd , be an invertible matrix.

Then, by using the iterative scheme (8)-(9), we obtain that the sequence {‖rn‖2}
rankG

⊗ (A−1f)

n=0 ,

is strictly decreasing and

A−1f = lim
n→∞

un =

rankG
⊗ (A−1f)∑
j=0

yj . (10)

Moreover, the rate of convergence is given by

‖rn‖2
‖r0‖2

=

n∏
j=1

sin θj (11)

for 1 ≤ n ≤ rankG⊗ (A−1f) where

θj = arccos

(
〈rj−1, Ayj〉
‖rj−1‖2‖Ayj‖2

)
∈ (0, π/2) (12)

for 1 ≤ j ≤ n.

From (10) we obtain that if

rankG⊗ (A−1f) <∞,

then ‖rn‖2 = 0 for all n > rankG⊗ (A−1f). Thus, the above theorem allow to us to construct a
procedure, that we give in the pseudocode form in Algorithm 1, under the assumption that we

have a numerical method in order to find a y solving (7) (see the step 5 in Algorithm 1) and
that we introduce below.

Algorithm 1 Greedy Rank-One Update

1: procedure GROU(f , A, ε, tol, rank max)
2: r0 = f

3: u = 0

4: for i = 0, 1, 2, . . . , rank max do
5: y = procedure (minrank⊗x≤1 ‖ri −Ay‖22)

6: ri+1 = ri −Ay

7: u← u + y
8: if ‖ri+1‖2 < ε or |‖ri+1‖2 − ‖ri‖2| < tol then goto 13

9: end if
10: end for

11: return u and ‖rrank max‖2.
12: break
13: return u and ‖ri+1‖2
14: end procedure
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2.1. A Block Coordinated Descent Approach for the Rank-One Minimization Problem

Now, we study the Rank-One minimization problem

min
x∈S1

‖b−Ax‖2 , (13)

that we can write as the following unconstrained optimization problem:

min
(x1,··· ,xd)∈RN1+···+Nd

‖b−A (x1 ⊗ · · · ⊗ xd)‖2 . (14)

A popular method for minimizing a real-valued continuously differentiable function Φ of

N1 + · · · + Nd real variables, subject to bound constrains, is the (block) coordinate descend
method. In this method, the coordinates are partitioned into Nk blocks and, at each iteration,

b is minimized with respect to one of the coordinate blocks while the others are held fixed

(see Algorithm 2). These cyclic methods have the advantage of not requiring any information
about the gradient to determine the descent directions. However, their convergence properties

are poorer than steepest descend methods. Moreover, its are attractive because of their easy
implementation in some particular cases as we will see below.

Algorithm 2 A Block Coordinated Descent Algorithm

1: Given Φ : RN1+···+Nd → R
2: Initialize x0

i ∈ RNi for i = 1, 2 . . . , d.

3: for n = 1, 2, . . . do

4: for k = 1, 2, . . . , d do
5: xnk ∈ arg min

xk∈RNk Φ(xn1 , . . . ,x
n
k−1,xk,x

n−1
k+1 , . . . ,x

n−1
d )

6: end for

7: end for

It is possible to show the following result (see Ammar, Chinesta and Falcó (2009)).

Theorem 2. Let b ∈ RN1N2···Nd and A ∈ RN1N2···Nd×N1N2···Nd , be an invertible matrix.
Assume that for each k ∈ {1, 2, . . . , d} the (N1 · · ·Nd)×Nk-matrix

Zk = A
(
x1 ⊗ · · · ⊗ xk−1 ⊗ INk

⊗ xk+1 · · · ⊗ xd
)

has linearly independent columns for every (x1, . . . ,xd) ∈ RN1+···+Nd satisfying

‖b−A (x1 ⊗ · · · ⊗ xd)‖2 ≤
∥∥b−A (x0

1 ⊗ · · · ⊗ x0
d

)∥∥
2
. (15)

Then every accumulation point
(
x∗1, . . . ,x

∗
d

)
of the sequence

{(xn1 , . . . ,xnd )}∞n=0 ,

generated by Algorithm 2 using the map

Φ (x1, . . . ,xd) = ‖b−A(x1 ⊗ · · · ⊗ xd)‖2,

satisfies the equation ∇Φ
(
x∗1, . . . ,x

∗
d

)
= 0. Moreover, assume that

x1, . . . ,xk−1,xk+1, . . . ,xd,

are fixed for some k ∈ {1, 2, . . . , d}, then

xk = (ZTk Zk)−1ZTk b,

is the global minimum of the directional minimization problem

min
x∈RNk

‖b−A (x1 ⊗ · · · ⊗ xk−1 ⊗ x⊗ xk+1 ⊗ · · · ⊗ xd)‖2 . (16)
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Note that given a point (x1, . . . ,xd), descend with respect to the coordinate xk means,

from Theorem 2, that we need to solve the standard least squares problem

min
x∈RNk

‖b− Zkx‖2 . (17)

In particular we minimize Φ cyclically with respect to the coordinate variables Thus, Theorem 2

allow to us to solve the rank-one minimization problem (13) by means the Alternate Least
Squares (ALS) Algorithm 3. We point out that for high-dimensional problems the numerical

implementation of solving the equation

ZTk Zkx = ZTk x, (18)

can be a hardly task. However, if the matrix A can be represented also in separated representation

form, then as the following corollary shows (18) can be implemented in a more easy way by using

the properties of the Kronecker product.

Algorithm 3 ALS Algorithm

1: procedure ALS(b, A, iter max, tol)

2: Initialize x0
i for i = 1, 2 . . . , d.

3: iter = 1

4: while iter < iter max do

5: x̂k ← x0
k, k = 1, . . . , d

6: for k = 1, 2, . . . , d do

7: Z = A(x0
1 ⊗ · · · ⊗ x0

k−1 ⊗ INk
⊗ x̂k+1 ⊗ · · · ⊗ x̂d)

8: x0
k = (ZTZ)−1ZTb

9: end for
10: if

∏d
k=1 ‖x0

k − x̂k‖2 < tol then goto 14

11: end if
12: iter = iter + 1

13: end while

14: return x0 = (x0
1, . . . ,x

0
d)

15: end procedure

Corollary 3. Assume that

A =

rA∑
j=1

Aj1 ⊗ · · · ⊗A
j
d,

where Aji ∈ RNi×Ni for i = 1, 2, . . . , d and j = 1, 2, . . . , rA. Let k ∈ {1, 2, . . . , d} and assume
that for x1, . . . ,xk−1,xk+1, . . . ,xd fixed, the (N1 · · ·Nd)×Nk-matrix

Zk =

rA∑
j=1

A
(j)
1 x1 ⊗ · · · ⊗A(j)

k−1xk−1 ⊗A
(j)
k ⊗A

(j)
k+1xk+1. · · · ⊗A

(j)
d xd,

has linearly independent columns. Then

x∗k = (ZTk Zk)−1ZTk b. (19)

is the global minimum of of the directional minimization problem (16).

This corollary implies that we can solve the minimization problem

min
(x1,...,xd)

∥∥∥∥∥b−
rA∑
i=1

Ai1x1 ⊗ · · · ⊗Aidxd

∥∥∥∥∥
2

, (20)

by means the ALS Algorithm 4.
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Algorithm 4 ALS where A is given in separable form

1: procedure ALS(b,
∑rA
i=1 A

i
1 ⊗ · · · ⊗Aid, iter max, tol)

2: Initialize x0
i for i = 1, 2 . . . , d.

3: iter = 1
4: while iter < iter max do

5: x̂k ← x0
k, k = 1, . . . , d

6: for k = 1, 2, . . . , d do

7: Z =
∑rA
j=1 A

(j)
1 x0

1 ⊗ · · · ⊗A
(j)
k−1x0

k−1 ⊗A
(j)
k ⊗A

(j)
k+1x̂k+1 · · · ⊗A

(j)
d x̂d

8: x0
k = (ZTZ)−1ZTb

9: end for

10: if
∏d
k=1 ‖x0

k − x̂k‖2 < tol then goto 14
11: end if

12: iter = iter + 1

13: end while
14: return x0 = (x0

1, . . . ,x
0
d)

15: end procedure

3. A CASE STUDY I: THE FUNDAMENTAL THEOREM OF ASSET PRICING

Now, consider a financial market which contains N traded financial assets, whose prices at time

t = 0 are denoted by

S0 =
[
S1

0 S2
0 · · · SN0

]T ≥ 0.

At time ∆t, the owner of financial asset number i receives a random payment depending on the

state of the world. We model this randomness by introducing a finite probability space (Ω,F ,P) ,
where Ω = {ω1, ω2, . . . , ωM} , F = P (Ω) and P (ωi) > 0 for all i ∈ {1, 2, . . . ,M} .

We note that the random payment arising from financial asset i is a RM–vector[
Si∆t (ω1) , Si∆t (ω2) , . . . , Si∆t (ωM )

]T ≥ 0.

At time t = 0 the agents can buy and sell financial assets. The portfolio position of an individual

agent is given by a trading strategy, which is a vector

θ = [θ1, θ2, . . . , θN ]T ∈ RN .

Here θi denotes the quantity if the i–th asset is bought at time t = 0, which may be negative, if

the agent has a short position, as well as positive, if he has a long position.
The dynamics of this model using the trading strategy θ are as follows:

1. At time t = 0 the agent invests the amount

ST0 θ = θ1S
1
0 + θ2S

2
0 + · · ·+ θNS

N
0 ,

2. and at time t = ∆t the agent receives a random payment P that we can represent by

using a matrix as follows, let

S∆t =


S1

∆t (ω1) S1
∆t (ω2) · · · S1

∆t (ωM )

S2
∆t (ω1) S2

∆t (ω2) · · · S2
∆t (ωM )

...
...

. . .
...

SN∆t (ω1) SN∆t (ω2) · · · SN∆t (ωM )

 ,
then

P = ST∆tθ.
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We remark that each component of vector P represents the payment received depending
on the realized state of the world ω.

Then we can define an arbitrage opportunity as a vector θ ∈ RN such that one of the
following two conditions holds.

(Arb1) ST0 θ = 0 and P = ST∆tθ ≥ 0, with ST∆tθ 6= 0.

(Arb2) ST0 θ < 0 and P = ST∆tθ ≥ 0.

Note that in the case of an arbitrage opportunity which satisfies (Arb 1) the agent’s net
investment at time t = 0 is zero, and there exists a ω ∈ Ω such that

N∑
i=1

Si∆t (ω) θi > 0,

that is, there exists non–zero probability to obtain a “free lunch”. In the case of condition (Arb
2), we have that ST0 θ < 0, that is, the agent borrows money for consumption at time t = 0, and

he does not have to repay anything at the time ∆t.

By using the well–known result called, the Separating Hyperplane Theorem (see
Rockafellar (1990)) that is a version of the Hahn–Banach Theorem (see Sheldon Lin (1996))

the following result follows (see Bingham and Kiesel (1998), Duffie (1992), Pliska (1997) and

Sheldon Lin (1996)).

Theorem 4. There are no arbitrage opportunities if and only if there exists Ψ > 0 such that

S∆tΨ = S0. (21)

We will say that a vector Ψ > 0 satisfying (21) is a state price vector. Moreover, we can

state that the Separating Hyperplane Theorem implies the existence of a state price vector in

the proof Theorem 4.
Now, we can give some preliminary definitions and results about basic Linear Algebra.

Let A be a m× n–matrix, then we define the column space of A, that we denote by colA, as

colA = span {Ae1, Ae2, . . . , Aen} ,

where ei denotes the i–th column of the n× n identity matrix. In particular, if we set

Si = S∆tei

for i = 1, 2, . . . , k, then

col S∆t = span
{

S1,S2, . . . ,Sk
}
.

In a similar way as above we define the row space of A, denoted by rowA, by

rowA = colAT .

Let

nulA = {x : Ax = 0} ,

and for a vectorial subspace E ⊂ Rn, we will denote by E⊥ the orthogonal complement of E,

that is,

E⊥ =
{

x : xTy = 0 for all y ∈ E
}
.

It is well–known (see Strang (1998)) that

E ∩ E⊥ = {0}
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and for all x ∈ Rn there exist x1 ∈ E and x2 ∈ E⊥ such that

x = x1 + x2.

Moreover,

(nulA)⊥ = rowA = colAT .

Finally, set K = {x ∈ Rn : x ≥ 0} ,
◦
K = {x ∈ Rn : x > 0} and for x ∈ Rn, let Z (x) =

{i : xi = 0} .
The following useful result, due to Acedo, Benito, Falcó, Rubia and Torres (2001), gives

a computational approach to the Fundamental Theorem of Asset Pricing.

Theorem 5. Let Ψ∗ be a solution of

min ‖S∆tΨ− S0‖22
subject to Ψ ≥ 0,

(22)

and take the residual vector θ∗ = S∆tΨ
∗ − S0. If θ∗ 6= 0 then θ∗ satisfies (Arb 2). Otherwise,

if θ∗ = 0 then one and only one of the following statement holds:

1. If Ψ∗ > 0 then there are no arbitrage opportunities.

2. If Ψ∗ ≥ 0 and

span
{
Si : i ∈ Z (Ψ∗)

}
⊂ span

{
Si : i /∈ Z (Ψ∗)

}
,

then there exist δ > 0 and a continuous path of state price vectors Ψ∗ε , where ε ∈ (0, δ) , and

such that

lim
ε→0

Ψ∗ε = Ψ∗.

Moreover, there are no arbitrage opportunities.

3. If Ψ∗ ≥ 0 and

span
{
Si : i ∈ Z (Ψ∗)

}
* span

{
Si : i /∈ Z (Ψ∗)

}
,

then there are arbitrage opportunities which satisfy (Arb1) and there are no state price vectors.

Moreover, let y∗ be a solution of

min ‖[S∆t,−S0] y + [S∆t,−S0] e‖22

subject to y ≥ 0,

(23)

where e = [1, 1, . . . , 1]T , then

θ∗ = [S∆t,−S0] y∗ + [S∆t,−S0] e

is an arbitrage opportunity.

From the above theorem we obtain the following result.

Corollary 6. Theorem 5 implies Theorem 4.

Now we would to construct an approximate solution of (22)

Ψ ≈ Ψ̂ =
r∑
i=1

ψ
(i)
1 ⊗ · · · ⊗ψ

(i)
d ,

where ψ
(i)
j ∈ RMi with ψ

(i)
j ≥ 0 for 1 ≤ i ≤ d and 1 ≤ j ≤ r. To this end we introduce the

following sets. Fix S+
0 = S0. Let x ∈ RN1···Nd we say that x ∈ S+

1 = S+
1 (N1, N2, . . . , Nd) if
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Algorithm 5 Non-negative ALS Algorithm

1: procedure NALS(b, A, r, iter max, tol)

2: Initialize xji for i = 1, 2, 3 . . . , d and for j = 1, 2, . . . , r.
3: iter = 1

4: while iter < iter max do

5: x̂ji ← xji , i = 1, . . . , d and j = 1, 2, . . . , r.
6: for k = 1, 2, . . . , d do

7: Z = zeros(N1 · · ·Nd, rNk);

8: for j = 1, 2, . . . , r do
9:

Z(:, (j − 1)Nk + 1 : jNk) = A(xj1 ⊗ · · · ⊗ xjk−1 ⊗ INk
⊗ x̂jk+1 ⊗ · · · ⊗ x̂jd)

10: end for

11:
[
(x1
k)T · · · (xrk)T

]T
= lsqnonneg(Z,b)

12: end for

13: if
∏r
j=1

∏d
k=1 ‖x

j
k − x̂jk‖2 < tol then goto 14

14: end if
15: iter = iter + 1

16: end while

17: return x0 = (x0
1, . . . ,x

0
d)

18: end procedure

x = x1 ⊗K x2 ⊗K · · · ⊗K xd, where xi ∈ RNi , xi ≥ 0, for i = 1, . . . , d. Then S+
r = S+

r−1 + S+
1

for r ≥ 1.

Recently, Lim and Comon (2009), has been show that S+
r is a closed set in any norm

topology in RN1···Nd . Thus, if S∆t has full rank, then the problem

min
Ψ∈S+

n

‖S∆tΨ− S0‖22 , (24)

is well posed for all n ≥ 1. This allow to us to propose the Algorithm 5.

In Figure 1 we show the evolution of the logarithm of residual where we perform

d × iterations of the NALS Algorithm 5 with r = 20, In this example we consider a square
random generated matrix S∆t ∈ R585×585 Here we consider that N1 = 5, N2 = 9 and N3 = 13.

The relative error was equal to 2.763592401388982e − 11. A similar numerical experiment is
show in Figure 2. In this case we consider a matrix S∆t ∈ R150×585. In both examples S0 was
randomly generated.

4. A CASE STUDY II : THE FIRST PASSAGE TIME AND THE POISSON EQUATION IN
(0, 1)D

Our first case to study is based on the well-known Feynman-Kac representation of the solution

to the Dirichlet problem for Poisson’s equation. Recall that the Dirichlet problem for Poisson’s
equation is {

−∆u = f in Ω ⊂ Rd
u|∂Ω = 0.

(25)

where f = f(x1, x2, . . . , xd) is a given function and ∆ =
∑d
i=1

∂2

∂x2
i

is the Laplace operator.

The solution of this problem at x0 ∈ Rd, given in the form of the path-integral with respect to
standard d-dimensional Brownian motion Wt is as follows

u(x0) = E
[∫ τ∂Ω

0
2f(Wt)dt

]
(26)
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Figure 1. The convergence of the NALS Algorithm 5 with r = 20 for a S∆t ∈ R585×585 nonnegative
square matrix.
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Figure 2. The convergence of the NALS Algorithm 5 with r = 20 for a S∆t ∈ R150×585 nonnegative
matrix.

Copyright c© 2010 AEFIN Revista de Economı́a Financiera 2010. 20:51–68
ISSN: 1697-9761



ALGORITHMS AND NUMERICAL METHODS FOR HIGH DIMENSIONAL MARKET MODELS 63

Here

τ∂Ω = inf{t : Wt ∈ ∂Ω}

is the first-passage time and Wτ∂Ω is the first-passage location on the boundary, ∂Ω. We assume

that E[τ∂Ω] < ∞ for all x0 ∈ Ω and f and u are continuous and bounded in Ω, and that the
boundary, ∂Ω, is sufficiently smooth so as to ensure the existence of a unique solution, u(x), that

has bounded and continuous first- and second-order partial derivatives in any interior subdomain

In order to find its variational formulation, we recall the following Green formula for the
Laplacian:

−
∫

Ω
∆u v dx =

∫
Ω
∇u · ∇v dx−

∫
∂Ω

∂u

∂n
v dγ. (27)

Assume that Ω = (0, 1)d. and for d = 1, 2, . . . let be the bilinear form

ad(u; v) =

∫
Ω
∇u · ∇v dx.

Take d = 3 in (25) and then we can easily deduce that u satisfies the following problem: Find

u ∈ H1
0 (Ω) such that

a3(u; v) =

∫
Ω
f vdx for all v ∈ H1

0 (Ω). (28)

The Galerkin approximation to (28) reads:

find uh ∈ Vh : a3(uh; vh) =

∫
Ω
f vhdx ∀vh ∈ Vh. (29)

Assume Vh = P ⊗ P ⊗ P where P = span{ω1, . . . , ωN} and ω1, . . . , ωN in H1
0 (0, 1) are

the following N–linearly independent maps. First, we partitioned the interval [0, 1] into N -parts

0 = x̂1 < x̂2 < . . . < x̂N+1 = 1.

Denote hi = x̂i+1 − x̂i and h = max1≤i≤N hi. For i = 1, 2, . . . , N − 1, let

ω(i)(x) =


(x− x̂i)/hi x̂i ≤ x ≤ x̂i+1

(x̂i+2 − x)/hi+1 x̂i+1 ≤ x ≤ x̂i+2,

0 otherwise

These functions are continuous and piecewise linear. It is easy to see that they are linearly
independent. The first order weak derivatives of the basis functions are piecewise constant. Indeed
for i = 1, 2, . . . , N − 1

d

dx
ω(i)(x) =


1/hi x̂i ≤ x ≤ x̂i+1

−1/hi+1 x̂i+1 ≤ x ≤ x̂i+2,
0 otherwise

We assume that we have an uniform partition, that is, hi = h for i = 1, 2, . . . , N. Then the

following formulas are useful∫ 1

0

d

dx
ω(i)(x)

d

dx
ω(i−1)(x)dx = −

1

h
for 2 ≤ i ≤ N − 1, (30)

∫ 1

0

(
d

dx
ω(i)(x)

)2

dx =
2

h
, for 1 ≤ i ≤ N − 1, (31)

∫ 1

0
ω(i)(x)ω(i−1)(x)dx =

h

6
for 2 ≤ i ≤ N − 1, (32)

∫ 1

0

(
ω(i)(x)

)2
dx =

2h

3
, for 1 ≤ i ≤ N − 1, (33)
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Now, let the stiffness multilinear matrix A3 defined by

(A3)j1,j2,j3;i1,i2,i3 = a3(ω(i1) ⊗ ω(i2) ⊗ ω(i3);ω(j1) ⊗ ω(j2) ⊗ ω(j3))

=

∫
Ω

(
∂ω(i1)

∂x1

∂ω(j1)

∂x1
ω(i2)ω(j2)ω(i3)ω(j3)

+
∂ω(i2)

∂x2

∂ω(j2)

∂x2
ω(i1)ω(j1)ω(i3)ω(j3)

∂ω(i3)

∂x2

∂ω(j3)

∂x2
ω(i1)ω(j1)ω(i2)ω(j2)

)
dx

= Aj1;i1Bj2;i2Bj3;i3 +Bj1;i1Aj2;i2Bj1;i1 +Bj1;i1Bj2;i2Aj3;i3 ,

where

Aj,i = a1(ω(i);ω(j)) and Bj;i =

∫ 1

0
ω(i)(x)ω(j)(x)dx.

Then, by using (30)-(33), we have that

A =



2
h
− 1
h

− 1
h

2
h
− 1
h

. . .
. . .

. . .

− 1
h

2
h
− 1
h

− 1
h

2
h

 and B =



2h
3

h
6

h
6

2h
3

h
6

. . .
. . .

. . .
h
6

2h
3

h
6

h
6

2h
3

 .

Finally, we obtain that

(A3)j1,j2,j3;i1,i2,i3 = (A⊗B ⊗B +B ⊗A⊗B +B ⊗B ⊗A)s,t,

by using

s = j3 +

2∑
l=1

[
(jl − 1)N3−l

]
and t = i3 +

2∑
l=1

[
(il − 1)N3−l

]
. (34)

On the other hand we have that∫
Ω
f (ω(j1) ⊗ ω(j2) ⊗ ω(j3))dx = Fj1,j2,j3 .

In order to solve (29) we consider a map in Vh given by

uh =
∑

i1,i2,i3

Ui1,i2,i3 ω
(i1) ⊗ ω(i2) ⊗ ω(j3),

where Ui1,i2,i3 ≈ u(x̂i1+1, x̂i2+1, x̂i3+1). Thus,

Uk,i2,i3 = Ui1,k,i3 = Ui1,i2,k = 0

for k ∈ {0, N}. Substitute uh in (29) with vh = ω(j1) ⊗ ω(j2) ⊗ ω(j3). Then we obtain that

N−1∑
i1,i2,i3=1

(A3)j1,j2,j3;i1,i2.i3Ui1,i2,i3 = Fj1,j2,j3 (35)

must be hold for all j1, j2, j3 ∈ {1, . . . , N − 1}. This implies that (29) is equivalent to solve the
following linear system

(A⊗B ⊗B +B ⊗A⊗B +B ⊗B ⊗A)u = f , (36)
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here we consider that a general multi-index tensor can be represented by a standard vector by
using that

Vj1,j2,...,jd = vs

if and only if

s = jd +

d−1∑
l=1

[
(jl − 1)Nd−l

]
.

For a general d ≥ 2 it can be shown that in order to solve numerically (25) we need to

solve the following linear system: d∑
j=1

A
(j)
1 ⊗ · · · ⊗A(j)

d

u = f . (37)

where

A
(j)
k =

{
A if k = j,

B if k 6= j.

Finally, it is not difficult to show that A and B are symmetric and definite positive matrices.

Then, from the properties 7-8 listed at the end of Section 1,
∑d
j=1 A

(j)
1 ⊗· · ·⊗A

(j)
d is a symmetric

and definite positive matrix. In consequence, it is invertible.

Example 7. Firstly, we consider the following problem in 3D: Solve for

(x1, x2, x3) ∈ Ω = (0, 1)3 :

−∆u = (2π)2 · 3 · sin(2πx1 − π) sin(2πx2 − π) sin(2πx3 − π), (38)

u|∂Ω = 0, (39)

which has as closed form solution

u(x1, x2, x3) = sin(2πx1 − π) sin(2πx2 − π) sin(2πx3 − π).

We used the separable representation Algorithm 1) with parameter values iter max = 5,

rank max = 1000 and ε = 0.001. The algorithm give us an approximated solution u1 ∈ S1.
In Figure 3 we represent the relative error of the solution computed using the separable

representation algorithm, using logarithmic scale, as a function of the number of nodes used

in the discretization of the Poisson equation. All the computations were performed using the
GNU software Octave in a AMD 64 Athlon K8 with 2Gib of RAM.

In Figure 4 we represent the CPU time, in logarithmic scale, used in solving the linear
system (37) against the separable representation algorithm. In both cases all the linear systems
involved were solved using the standard linear system solver (A\b) of Octave.

Example 8. Finally we are addressing some highly multidimensional models. To this end we

solve numerically (25) for (x1, . . . , xd) ∈ Ω = (0, π)d where

f =

d∑
k=1

−(1 + k) sin(−1+k)(xk)
(
−k cos2(xk) + sin2(xk)

) d∏
k′=1,k′ 6=k

sin(1+k′)(xk′ ),

which has as closed form solution

u(x1, . . . , xd) =
d∏
k=1

sin(k+1)(xk).

Here we consider the true solution u given by Ui1,...,id = u(x̂i1+1, . . . , x̂id+1). For d = 10 we

use the parameter values iter max = 2, rank max = 10 and ε = 0.001. In a similar way as above

the algorithm give us an approximated solution û ∈ S1. In Figure 5 we represent the absolute
error ‖û − u‖2 as a function of h = π/N for N = 5, 10, 20, . . . , 160 in log10-scale. By using

similar parameters values the problem has been solved for d = 100 in about 20 minutes.
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Figure 3. The relative error ‖u1 − A−1f‖2/‖A−1f‖2 in logarithmic scale.
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Figure 4. The CPU time, in seconds, used in solving the linear system as a function of the number of
nodes employed in the discretization of the Poisson Equation.

5. FINAL COMMENTS AND REMARKS

This work has allowed defining a general form of multilinear systems in a separable representation

form. In particular, we use the fact that tensors of order 3 or higher have best rank-1

approximation. This fact allows us to propose an iterative method based on the so-called
enrichment-projection technique. As we can show the method runs under very weak conditions,

recall that we only use the assumption that the linear system has a an invertible matrix. However,

its efficiency depends strongly on the matrix form (symmetric, tridiagonal, full, sparse, ...). Also,
an important issue is related to the stopping criterion in the enrichment process.
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