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Abstract. In this note we give a simple formula to compute the topological entropy of a certain class of

degree one circle maps which depends only on the “kneading pair” of the map under consideration. The

class of maps we consider generalizes the one-parameter family of maps whose bifurcations were studied

by Hockett and Holmes in [3].

Rsum. Dans cette note on donne une formule simple pour calculer l’entrope topologique d’une application

du cercle en lui-mme. Cette formule seulement depend de la “paire de petrissage” de l’application. La

classe d’applications qu’on considre est une gnralisation de la famille un paramtre donc les bifurcations

ont t tudis par Hocket et Holmes [3].
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Version franaise abrge

Dans cette note on utilise la thorie des itinraires symboliques pour applications du cercle en
lui-mme dveloppe par Alsed et Maosas [1] pour obtenir une formule pour l’entropie topologique
des applications du cercle dans une classe particulire. Cette classe est une gnralisation de la
famille d’applications tudie par Hocket et Holmes dans [3].

On note par L l’ensemble d’applications continues F : R → R vrifiant F (x + 1) = F (x) + 1
(c’est a dire L est l’ensemble de relvements des applications continues du cercle en lui-mme de
degr un). On dit qu’une application F ∈ M si:

(A) F ∈ L.

(B) Il existe cF ∈ (0, 1) tel que F est strictement croissante dans l’intervalle [0, cF ] et stricte-
ment dcroissante dans [cF , 1].

(C) Il existe un intervalle ferm AF ⊂ (0, 1) tel que cF ∈ Int(AF ) et F (AF ) ⊂ AF + m pour
m ∈ Z.

Soit F ∈ L un relvement d’une application f du cercle en lui- mme. On dira que l’entrope
topologique de F, dnote par h(F ), est l’entropie topologique de f (voir [2] pour la dfinition
d’entrope topologique de f).

Le rsultat principal de la note est le suivant.

Thorme 1 Soit F ∈ M. Alors il existe KF et PF , deux polynmes dpendant seulement de
{Fn(0)}∞n=0 et {Fn(cF )}∞n=0 respectivement, tels que h(F ) = log(min{αKF

, αPF
})−1 o αKF

et
αPF

sont, respectivement, les plus petites racines de KF et PF dans l’intervalle (0, 1).

Les corollaires suivantes donnent des conditions dans lesquelles la formule pour calculer
l’entrope topologique d’applications de M est encore plus simple.

Corollaire 2 Si la longueur de l’intervalle de rotation de F ∈ M est plus grand que 1/2, alors
h(F ) = log α−1

PF
.

Corollaire 3 Soit F ∈ M tel que E(F (cF )) − E(F (0)) ≥ 2. Alors h(F ) = log α−1
PF

(o E(·)
dnote la fonction partie entire).

Finalement on donne une formule pour calculer l’entrope topologique de la famille d’appli-
cations tudie par Hocket et Holmes dans [3]. Soit [µ0, µ1] un intervalle ferme de la droite rel
et soit Fµ = F (µ, .) : [µ0, µ1] × R −→ R une famille d’applications qui dpend continment du
paramtre µ et qui, pour tout µ ∈ [µ0, µ1], satisfait les conditions suivantes:

(a) Fµ ∈ M∩ C1(R,R).

(b) L’application (Fµ − m)|AFµ
a le point fixe rpulsif minAFµ et un point fixe attractif wµ ∈

AFµ .

(c) On a a ∈ (0, cF ) et b ∈ (cF , 1) tels que Fµ(b) = Fµ(min AFµ) = Fµ(a) + 1 et a + 1 >
Fµ(0) > b.

Alors on a

Corollaire 4 Pour la famille d’applications prcdante on a h(Fµ) = log α−1
PFµ

.
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1 Introduction

In [3] Hockett and Holmes describe certain bifurcations of a continuous one-parameter family of
degree one circle maps in terms of the relation between the parameter and the rotation interval
of these maps. To carry on their study they use the natural extension of the “Kneading Theory”
of Milnor and Thurston [5] to the family of maps they consider. This extension is based in the
use of an “ad hoc” coding. In order to maintain small the number of symbols of this coding
(and, therefore, to maintain the difficulty of the computations at a reasonable level) the authors
have to impose a restriction on the “height” of the maps under consideration (see Section 2 for
a precise definition of “height”).

The purpose of this paper is to obtain a simple formula for the topological entropy of the
maps from the family considered by Hockett and Holmes in [3]. To do this, instead of working
in their framework, we shall use the coding introduced by Alsed and Maosas in [1] together
with the appropriate extension of the “Kneading Theory” to this coding. The advantage of
this approach is that it allows us to work with circle maps of degree one of arbitrary ”height”
without increasing too much the difficulty of the computations. In fact, we shall be able to find
a simple entropy formula for a much wider class of maps that the one considered by Hockett
and Holmes [3]. This formula depends in a simple way on the “kneading pair” of the map under
consideration (see again Section 2 for a precise definition of a “kneading pair”).

Now we are going to define the class M of maps we shall consider. As usual, given a
continuous map of the circle into itself we shall work with its lifting rather than with the
map itself. Thus we shall consider the class L of continuous maps F : R → R such that
F (x + 1) = F (x) + 1 (that is, L is the class of all liftings of continuous circle maps of degree
one). The we shall say that F ∈ M if:

(A) F ∈ L.

(B) There exists cF ∈ (0, 1) such that F is strictly increasing in [0, cF ] and strictly decreasing
in [cF , 1].

(C) There exists a closed interval AF of length at most 1 such that cF ∈ Int(AF ) and F (AF ) ⊂
AF + m for some m ∈ Z.

We note that each map from L having a minimum in [0, 1] is conjugated by a translation
to a map from L having the minimum at 0. Therefore, the fact that in (B) we fix that F
has a minimum in 0 is not restrictive. On the other hand, it is not difficult to see that for
F ∈ M, 0 /∈ AF . Moreover, if 1 ∈ AF then the map F −m restricted to an appropriate interval
of length 1 is a bimodal map of the interval. Since an entropy formula for such maps has already
been obtained in [6] we can replace (C) by the following stronger condition:

(D) There exists a closed interval AF ⊂ (0, 1) such that cF ∈ Int(AF ) and F (AF ) ⊂ AF + m
for some m ∈ Z.

We note that then (F − m)|AF
is unimodal. The next section will be devoted to introduce the

coding we are going to use together with the appropriate “Kneading Theory” and, in Section 3,
we shall state the main result of the paper, which gives the entropy formula we are looking for.

2 Kneading sequences and topological entropy for maps in M

In this section, we are going to outline the extension of the kneading theory of Milnor and
Thurston [5] to the class M. These techniques have been used already by Alsed and Maosas in
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[1] to obtain lower bounds of the topological entropy depending on the rotation interval for the
class of maps satisfying conditions (A) and (B).

We start by introducing some notation. In what follows we shall denote by E(.) the integer
part function. For F ∈ M we define the height of F , denoted by pF , as E(F (cF )) − E(F (0)).

If A ⊂ R and x ∈ R, we shall write x + A or A + x to denote the set {x + a : a ∈ A}. Let
F ∈ M be with height p. Then the points of the set ∆(F ) = Z∪F−1(Z)∪ cF +Z will be called
the turning points of F. We note that if x ∈ ∆(F ) then x + Z ⊂ ∆(F ). Moreover, ∆(F ) ∩ [0, 1]
can be written as {c0, c1, c2, . . . , c2p+1} with 0 = c0 < c1 < . . . < cp+1 = cF < . . . < c2p+1 = 1,
F (c1) = E(F (0)) + 1 = E(F (cF )) − p + 1 and F (ci) = F (c2p+1−i) = E(F (cF )) − p + i for
i = 2, 3, . . . , p.

Now we define the notion of address we are going to use. For x ∈ R we set AF (x) =
(s(x), d(x)), where d(x) = E(F (x)) − E(x) and

s(x) =





L if x − E(x) < cF and x 6∈ ∆(F ),
R if x − E(x) > cF and x 6∈ ∆(F ),
ci if D(x) = ci.

We note that F |[ci−1,ci] is monotone and (E ◦F )|[ci−1,ci] is constant for all i = 1, 2, . . . , 2p+1.
Hence, each point from an interval of the form (ci−1, ci) + m with m ∈ Z has the same address.

Let A = (s, d) ∈ {L,R, c0, c1, c2, . . . , c2p+1}×Z. We set ǫ(L) = 1, ǫ(R) = −1, and ǫ(ci) = 0 for

all i = 0, 1, . . . , 2p+1. We also set κ0(x) = AF (x) and κn(x) =
[∏n−1

i=0 ǫ(AF (F i(x)))
]
AF (Fn(x))

for each n ∈ N. Then the power series
∑

∞

n=0 κn(x)tn will be called the invariant coordinate of
x and will be denoted by κF (x) (or simply κ(x) when no confusion will be possible). Note that
κ(x) = κ(x + m) for all m ∈ Z.

Let V be the set of all pairs of the form (s, d) with d ∈ Z and s ∈ {L,R}. We note that for
F ∈ M and for x 6∈ ∆(F ), AF (x) ∈ V.

It is not difficult to show that for each n ≥ 0 there exists δ(n) > 0 such that κn(y) takes a
constant value, denoted by κ(x+), for all y ∈ (x, x + δ(n)). Then, for x ∈ R we set

κ(x+) = κF (x+) =
∞∑

n=0

κn(x+)tn.

In a similar way we define κ(x−). If Fn(x) 6∈ ∆(F ) for all n ≥ 0 (that is, s(Fn(x)) ∈ {L,R}
for all n ≥ 0) then κ(x+) = κ(x−) = κ(x). As for the invariant coordinate we have that
κ(x+) = κ((x + m)+) and κ(x−) = κ((x + m)−) for all m ∈ Z.

Remark 2.1 For each δ > 0 there exists ǫ > 0 such that for all x ∈ (0, δ) there exists y ∈
(−ǫ, 0) with the property that F (x) = F (y). Therefore we get that κ0(0

+) = (L,E(F (0))),
κ0(0

−) = (R,E(F (0))+1) and κn(0+) = −κn(0−) for all n > 0. In a similar way we obtain that
κ0(c

+
F ) = (R,E(F (cF ))), κ0(c

−

F ) = (L,E(F (cF ))) and κn(c+
F ) = −κn(c−F ) for all n > 0. 2

The sequences κ(0+) and κ(c−F ) play a special role in our study. They will be called the
kneading pair of F . We note that if one knows the kneading pair of F , in view of Remark 2.1,
one can get easily the sequences κ(0−) and κ(c+

F ).
By, setting L < R we can define an ordering in V as follows. Let (s, d) and (t,m) be elements

of V such that (s, d) 6= (t,m). We say that (s, d) < (t,m) if either s < t or s = t = L and d < m,
or s = t = R and d > m. If none of these holds we say that (s, d) > (t,m). The above ordering
has the property that if x, y 6∈ ∆(F ) and x < y, then AF (x) ≤ AF (y).
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For a map F ∈ M, we shall denote by VF the set of all addresses of all points of R \ ∆(F ).
Note that VF ⊂ V and CardVF = 2p + 1. We also shall write the elements of VF as I1 < I2 <
. . . < I2p+1.

Finally, let F ∈ L and assume that F is a lifting of the circle map f. We define the topo-
logical entropy of F , denoted by h(F ) as the topological entropy of f (see [2] for a definition of
topological entropy).

3 Topological entropy for maps in M

This section will be devoted to establish the formula for the topological entropy we are looking
for. Prior to state the main result of this paper we shall introduce some more notation.

Set RF (t) = t[κ(0+)−κ(0−)]. Since κ(0+) and κ(0−) are formal power series with coefficients
in Z[[VF ]] so is RF (t). Hence, RF (t) can be written as

∑2pF +1
i=1 φi(t)Ii, where φi(t) ∈ Z[[t]] for

all i = 1, 2, . . . , 2pF + 1. Then we also set

PF (t) = −1 +
pF∑

i=1

(pF − i + 1)φi(t) −
2pF +1∑

i=pF +3

(i − pF − 2)φi(t).

Remark 3.1 The series PF (t) can be computed directly from κ(0+). To see this we note that,
in a similar way as we did for RF (t), we can write κ(0+) as

∑2p+1
i=1 φ̃i(t)Ii with φ̃i(t) ∈ Z[[t]] for all

i = 1, 2, . . . , 2pF +1. Then, by Remark 2.1, we have that RF (t) = tI1− tI2p+1 +2t[κ(0+)− I1] =
−tI1−tI2p+1+2tκ(0+). Hence, φ1(t) = −t+2tφ̃1(t), φ2p+1(t) = −t+2tφ̃2p+1(t) and φi(t) = φ̃i(t)
for i = 2, 3, . . . , 2p. 2

From the definition of M (see (D)) we have that κ(c+
F ) and κ(c−F ) are formal power series with

coefficients in Z[[Ip+1, Ip+2]]. Therefore, κ(c+
F )−κ(c−F ) can be written as KF (t)Ip+1 + K̃F (t)Ip+2

with KF (t), K̃F (t) ∈ Z[[t]].

Remark 3.2 The series KF (t) can be computed directly from κ(c−F ). Indeed, if κ(c−F ) =
π1(t)Ip+1 + π2(t)Ip+2 with π1(t), π2(t) ∈ Z[[t]] then, by Remark 2.1, we have that κ(c+

F ) =
(1 − π1(t))Ip+1 + (1 − π2(t))Ip+2. Hence KF (t) = 1 − 2π1(t). 2

If KF (t) vanishes in (0, 1) we shall denote by αKF
the smallest zero of KF (t) in (0, 1).

Otherwise we set αKF
= 1. In a similar way we define αPF

by using PF (t) instead of KF (t).
The following theorem is the main result of this paper and gives the formula we are looking

for.

Theorem 3.3 For F ∈ M we have h(F ) = log(min{αKF
, αPF

})−1.

We note that, in view of Remarks 3.1 and 3.2, the numbers αKF
and αPF

can be computed
solely from the knowledge of κ(0+) and κ(c−F ). Therefore, Theorem 3.3 gives a formula for the
topological entropy of a map from M depending only on the kneading pair of the map under
consideration.

In view of Condition (D), for each F ∈ M we get that F |AF
is unimodal. Therefore, α−1

KF
≤ 2

(see for instance [4]). Hence, whenever α−1
PF

≥ 2 we shall have h(F ) = log α−1
PF

. Next we shall
obtain sufficient conditions to assure the validity of this last formula.

Corollary 3.4 If the length of the rotation interval of F ∈ M is strictly larger that 1/2 then
h(F ) = log α−1

PF
.
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If for F ∈ M we have that pF ≥ 2 then the rotation interval of F has length larger than or
equal to 1. Thus, from the above corollary, we obtain

Corollary 3.5 Let F ∈ M. If pF ≥ 2 then h(F ) = log α−1
PF

.

In the case of the family considered by Hockett and Holmes [3] it turns out that αKF
= 1

and, hence, the same formula for the topological entropy holds. To see this let us define precisely
the family of maps they considered. Let [µ0, µ1] be a closed proper interval of the real line and
let Fµ = F (µ, .) : [µ0, µ1] × R −→ R be a family which depends continuously on µ and such
that, for each µ ∈ [µ0, µ1], it satisfies the following conditions:

(a) Fµ ∈ M∩ C1(R,R).

(b) The map (Fµ−m)|AFµ
has minAFµ as a repulsive fixed point and an attractive fixed point

wµ ∈ AFµ .

(c) There exist a ∈ (0, cF ) and b ∈ (cF , 1) such that Fµ(b) = Fµ(min AF ) = Fµ(a) + 1 and
a + 1 > Fµ(0) > b.

Then we have

Corollary 3.6 For the above family of maps we have h(Fµ) = log α−1
PFµ

.
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